Der Kansas City Financial Stress Index

the-stress-1473487-1279x927Kansas City war in der letzten Zeit vor allem Dank dem Football Team, das den Super-Bowl gewann, in den Schlagzeilen.
Leider war ich noch nicht in Kansas City, so dass ich Ihnen nichts über die Sehenswürdigkeiten vor Ort berichten kann. Aber alternativ – und wahrscheinlich auch viel passender zur Thematik der Website – möchte ich den Kansas City Financial Stress Index (KCFSI) vorstellen.

Der Name klingt nun nicht so verlockend, als dass er danach schreit, einen zweiten Blick darauf zu werfen. So wäre mir der Index und seine Bedeutung beinahe entgangen. Doch ein Diagramm mit übereinandergelegtem Index-Verlauf und dem Verlauf des DAX, ließ das Interesse sofort deutlich anwachsen.

Herkunft und Merkmale des Kansas City Financial Stress Index

Entwickelt wurde der Index von der Federal Reserve Bank in Kansas City (Craig Hakkio und William Keeton) als Resonanz auf die Finanzkrise 2008/2009, quasi als künftiges Frühwarnsystem.
Bitte wundern Sie sich nicht, dass Daten bereits ab 1990 aufgeführt sind. Hierbei handelt es sich um Rückrechnungen.

Grundlage ist die Frage, wo das Geld hinfließt. Herrscht Stress im Märkt, so unterscheiden sich die Geldflüsse gegenüber „normalen“ Marktphasen.

So bedeutet Unsicherheit eigentlich, dass keine oder wenige konkrete Information vorhanden sind, denn wenn alle Fakten vorliegen, lässt sich ja eine eindeutige Richtung einschlagen. Bei einer eindeutigen Richtung folgen auf kleine Änderungen der Nachrichtenlage auch kleine Kursänderungen. Ohne konkrete Informationen kann jede Neuigkeit zu großen Kursverwerfungen führen. Es steigt also die Volalilität.
Im Rentenmarkt herrscht eine Asymmetrie der Informationen zwischen Geldgeber und Schuldner. Anleger gehen raus aus riskanten Werten und flüchten in Qualität. Ferner werden liquide Anlagen bevorzugt, die schnell wieder verkauft werden können.
Nicht zuletzt wird ein Herdentrieb ausgelöst, in der Anleger der breiten Masse folgen.

Der Kansas City Financial Stress Index basiert auf 11 Größen des US-Finanzsystems, die monatlich ermittelt und in einem Index dargestellt werden.
Davon beziehen sich 7 Größen auf den Rentenmarkt und 4 Größen auf den Aktienmarkt. Auf die einzelnen Komponenten einzugehen macht wenig Sinn. Interessierte finden alle Informationen bei der Kansas City Fed unter folgendem Link.

Obwohl der Index auf das US-amerikanischen Marktsystem aufbaut, ist die Korrelation zum hiesigen Finanzsystem doch so groß, dass er durchaus Anwendbarkeit für den deutschen Markt hat. Darauf kommen wir in Kürze nochmals zurück.

Historisches Verhalten des Kansas City Financial Stress Index

Nachfolgend ist das Diagram des KCFSI zurückgerechnet bis Februar 1990 aufgeführt. Die Null-Linie stellt den langjährigen Durchschnitt dar. Negative Werte stehen für wenig Stress in den Märkten, während positive Werte für eine gewisse Unsicherheit steht. In der Regel werden Werte ab +1 als Verkaufssignale interpretiert.

Diagramm01Ein Klick auf das Diagramm bewirkt die Anzeige in Originalgröße.

Extreme Stresssituationen traten Ende 1990, zwischen der 2.Jahreshälfte 1998 und Anfang 2003, sowie Herbst 2007 bis September 2009 auf.
Nun wollen wir die aus den DAX-Ständen ermittelten Bärenmärkte über den gesamten Zeitraum überlagern:

Diagramm01_bWir können feststellen, dass die Dot.com-Blase ab 2000 mit einem Minus von fast 70%, die Finanzkrise ab 2008 mit einem Abschlag um fast 55% und die Baisse in 1998 erkannt wurden.
Fünf weitere Bärenmärkte mit Kursrückgängen von meist knapp über 20% (mit Ausnahme 2011 mit einem Minus von 30,9%) wurden nicht erkannt.

Bis jetzt haben wir also einen Pluspunkt durch das Erkennen der großen Bärenmärkten, sowie einen Minuspunkt durch das Nicht-Erkennen der kleineren Baisse‘.
Wenden wir uns jetzt noch einmal etwas genauer dem negativen Teil zu, denn es gibt zwei Punkte, die dies relativieren:

  1. Viele Investoren sind davon überzeugt, dass ein Langfristanleger kleinere Crashs durchaus aussitzen können muss. Zum einen sind diese schwer zu prognostizieren, zum anderen wurden diese Verluste in der Vergangenheit meist schnell wieder aufgeholt.
  2. Wie bereits zuvor erwähnt, wurde der Kansas City Financial Stress Index für den amerikanischen Finanzmarkt konzipiert. Legen wir den S&P 500 Index zugrunde,  so gab es über den Zeitraum nur zwei Bärenmärkte, nämlich die Dot.com-Blase und die Finanzkrise. Damit zeigt sich der Index nochmals deutlich überzeugender.
    Bestätigt wird aber auch der Spruch, dass der DAX einen Schnupfen bekommt, wenn die Wall Street niest.

Strategievergleiche Kansas City Financial Stress Index

Der Beobachtungszeitraum des Vergleichs reicht vom 02.01.1990 bis zum 30.09.2019.
Folgende Strategien mit dem Stress Index und folgende Vergleichsstrategien werden gegenübergestellt:

  • KCFSI direkt: Verkauf wenn Indexwert größer gleich 1 ist und Kauf wenn Indexwert kleiner als 1 ist.
  • KCFSI Folgemonat (2 M): Verkauf wenn Indexwert größer gleich 1 ist und Kauf wenn Indexwert länger als 1 Monat kleiner als 1 ist.
  • KCFSI < 0,5: Verkauf wenn Indexwert größer gleich 1 ist und Kauf wenn Indexwert kleiner als 0,5 ist (häufig verwendet).
  • DAX Buy-and-Hold: Kauf von DAX-Zertifikaten am 2.01.1990 und Halten der Zertifikate bis zum Datum der Auswertung am 30.09.2019.
  • DAX 200-Tage Strategie mit 3%-Regel: Entsprechend den Regeln der Strategie.

 

Strategie Kurs Gesamt- Jährliche
30.09.19 Perform. Rendite
     
KCFSI direkt 623.268,93 € 523,27% 6,58%
KCFSI Folgemonat (2 M) 746.704,78 € 646,70% 7,26%
KCFSI Kauf < 0,5 1.087.342,98 € 987,34% 8,67%
DAX Buy-and-Hold 685.043,68 € 585,04% 6,93%
DAX 200 Tage (3% Regel) 989.318,31 € 889,32% 8,31%

Von den untersuchten Strategien schneidet die Strategie des sofortigen Kaufs sogar schlechter ab als der DAX, während die Strategie mit dem Kauf nach einem Monat Karenzzeit leicht besser als eine reine Buy-and-Hold Strategie des DAX abschneidet.
Deutlich besser – auch besser als die DAX 200-Tage Strategie – zeigt sich die Strategie mit dem Kauf unterhalb eines Indexstandes von 0,5.

Neues Börsensignal

Obwohl der Stress Index für den US-amerikanischen Markt konzipiert wurde, konnte er alle großen Rezessionen des deutschen Aktienmarktes erkennen.
Deshalb soll der Indikator mit in die monatlich ermittelten Börsensignale aufgenommen werden.
Dabei wird ein Verkaufssignal ausgegeben, wenn Indexwert größer gleich 1 ist und Kaufsignal wenn Indexwert kleiner als 0,5 ist.

Rückblick auf die „Dynamische Relative-Stärke“ Strategie

vector_Graphic_1Die Relative-Stärke Strategien konnten mit Blick auf die absoluten Zahlen nicht nur die Vergleichsindizes, sondern auch viele andere Strategien outperformen. Allerdings war das Abschneiden nicht kontinuierlich auf hohem Niveau, sondern schwankte je nach Zeitraum deutlich.
Beim wikifolio „DynamischeRelative Stärke“ hatte ich angedeutet, einen zweiten Blick auf diese Tatsache zu werfen. Allerdings musste ich feststellen, dass sich daraus ein Umfang von mehr als ein paar Zeilen entwickelt. Dafür ist ein Artikel auf der Website deutlich besser geeignet, als ein Kommentar auf wikifolio.
Im weiteren Verlauf werden einige Daten zusammengetragen, die uns erlauben sollten, zumindest ein kleines Resümee zu ziehen.

Dabei werden die Daten in Zeiträume von 6 Monaten (mit Ausnahme der ersten Periode, die etwas kürzer ist) zusammengefasst und nach folgenden Kriterien aufgeführt:

  • Grafik der wöchentlichen Performance der Strategie und des DAX‘.
  • Grafik des absoluten Wertes der Strategie und des DAX‘ normiert auf 100% zu Beginn der Periode.
  • Performance der Strategie über die Periode.
  • Performance des DAX‘ über die Periode.
  • Vergleich der wöchentlichen Performance zwischen Strategie und DAX, d.h. für jede Woche in der die Performance der Strategie besser als die des DAX‘ ist wird ein Punkt vergeben. Ist die Performance des DAX‘ höher, so wird ein Minuspunkt vergeben.
  • Anzahl der durchgeführten Verkäufe der Strategie während der Periode.
  • Bewertung im Vergleich zum DAX: Ist die Performance während der Periode deutlich besser als die des DAX‘, so wird die Farbe grün eingesetzt. Im umgekehrten Fall wird die Farbe rot gesetzt. Sind beide Werte vergleichbar, kommt „gelb“ zum Einsatz.
  • Bewertung absolut: Bei deutlich positiver Performance wird die Farbe grün eingesetzt. Bei deutlich negativer Performance wird „rot“ gesetzt. Ist keine größere Änderung erfolgt, so wird „gelb“ gesetzt.
  • Volatilität DAX: Die Jahresvolatilität des DAX‘ (250 Tage) gemittelt über den Beobachtungszeitraum.
  • Maximum Drawdown: Größter Wertverlust zwischen Höchst- und dem darauffolgenden Tiefststand innerhalb der Periode.

1.Halbjahr 2016

Perf_Proz_1_16

Perf_Abs_1_16

2.Halbjahr 2016

Perf_Proz_2_16

Perf_Abs_2_16

1.Halbjahr 2017

Perf_Proz_1_17

Perf_Abs_1_17

2.Halbjahr 2017

Perf_Proz_2_17

Perf_Abs_2_17

1.Halbjahr 2018

Perf_Proz_1_18

Perf_Abs_1_18

2.Halbjahr 2018

Perf_Proz_2_18

Perf_Abs_2_18

1.Halbjahr 2019

Perf_Proz_1_19

Perf_Abs_1_19

2.Halbjahr 2019

Perf_Proz_2_19

Perf_Abs_2_19

Zusammenfassung

Mittels einer direkten Gegenüberstellung lassen sich die Daten besser beurteilen. Doch zuvor soll das Abschneiden über den gesamten Zeitraum gegenübergestellt werden:

 

wikifolio DAX
113,73% 36,23%

Über die komplette Zeit schneidet das wikifolio deutlich besser ab als der DAX.

Kommen wir nun zu den in Halbjahresperioden zusammengefassten Werten:

 

Rel. Perform. Performance Vergleich Verkäufe Bewertung Bewertung Volatilität max.
wikifolio DAX wiki vs DAX wikifolio vs DAX ohne DAX DAX Drawdown
1/2016 11,65% -2,38% 4 2 25,27% -12,12%
2/2016 22,44% 20,13% 5 8 23,47% -11,86%
1/2017 24,11% 10,91% 5 6 17,10% -4,78%
2/2017 37,10% 1,45% 17 2 11,32% -4,47%
1/2018 -11,73% -4,73% 0 11 12,21% -14,01%
2/2018 -12,09% -14,20% 2 9 14,14% -21,41%
1/2019 24,38% 17,42% 2 5 15,47% -5,68%
2/2019 -4,81% 7,57% -2 9 15,27% -10,13%


Den Vergleich „wikifolio versus DAX“, mit den wöchentlichen Auswertungen können wir getrost außer Acht lassen, denn dass das wikifolio im Gesamten besser als der DAX performt, wenn die wöchentlichen Ergebnisse besser sind, ist wohl selbstverständlich.

Dagegen ist bei der Anzahl der Verkäufe im wikifolio ein Trend auszumachen: Überwiegend sorgt eine geringe Anzahl an Verkäufen für ein gutes Ergebnis:
Auch dieses Verhalten ist durchaus nachzuvollziehen. Verkauft wird, wenn der RSL deutlich fällt und dies geschieht in der Regel bei fallenden Kursen. Auch lange Zeit stagnierende Kurse können letztendlich zu einem Verkauf führen, was aber seltener vorkommt.

Überraschend ist die Tatsache, dass sich aus der DAX Volatilität innerhalb des Beobachtungszeitraums keinerlei Zusammenhänge erkennen lassen.

Dafür ist ein anderer Zusammenhang um so deutlicher zu erkennen: Je höher der Maximum Drawdown in dem ausgewerteten Zeitraum, d.h. je ausgeprägter ein zusammenhängender Kurssturz war, desto schlechter ist das Abschneiden des wikifolios. Natürlich haben starke Kursabnahmen große Auswirkungen auf die Performance, aber eben nicht alleine. Denn betrachten wir das 2.Halbjahr 2017 mit dem geringsten Maximum Drawdown, sehen wir, dass der DAX dennoch nur 1,45% Zuwachs erzielen konnte.
Neben dem bereits erwähnten Grund, sollte ein weiteres Phänomen in Betracht gezogen werden:
Nach Bärenmärkten ist immer wieder zu beobachten, dass die vorherigen Gewinneraktien nicht mehr gefragt sind, während neue Werte in den Vordergrund rücken. Mit Momentumstrategien zu der auch die Relative-Stärke Strategie in allen Varianten zählt, wird eben auf Gewinneraktien gesetzt. Unterstellen wir bei vorausgehenden Aussage, dass es kein Bärenmarkt sein muss, sondern dass schon starker Kurssturz zu dem Verhalten führen kann, so lassen sich die obigen Zusammenhänge gut erklären.

Fairerweise muss aber erwähnt werden, dass dies bei dem relativ kurzen Gesamtbeobachtungszeitraum lediglich eine Vermutung sein kann. D.h. weitere Daten müssen künftig die Richtigkeit untermauern oder widerlegen.

Resümee

Was für Auswirkungen können die gesammelten Daten und die Auswertungen haben?
Wir werden sicherlich nicht im Vorfeld ermitteln können, wie stark die Börsen fallen werden. Aber was bleibt dann noch?
Drei Kernaussagen lassen sich treffen:

  • Es gibt Zeiten bei denen Relative-Stärke Strategien schlechter als der breite Markt abschneiden. Dabei können deutliche Kursabschläge auftreten.
  • Viele Studien belegen, dass Relative-Stärke Strategie über längere Zeiträume besser als der breite Markt abschneiden.
  • Die Phasen, in denen die Strategie besser oder schlechter als der Markt abschneidet, lassen sich nicht vorhersagen.

Sicherlich gibt es mehrere Möglichkeiten auf diese Eigenschaften zu reagieren.
Persönlich sehe ich den Einsatz einer Momentum-Strategie einfach als ein Baustein von mehreren bei der Geldanlage. Somit wird auch bei einem einmal etwas größeren Abschlag das Gesamtdepot nur in geringerem Maß belastet, während längerfristig von den Vorteilen profitiert werden kann.
Wie so häufig beim Thema Aktien gibt es leider nicht die perfekte Lösung, sondern nur Möglichkeiten zur Optimierung der bestehenden Vorgaben.

Depotcheck Jahresende 2019

Weighing 1Zwar steht noch ein Börsentag im Jahr 2019 aus, doch sollte diese Tatsache keinen Einfluss auf die prinzipiellen Aussagen zum Depotcheck haben. Hintergrund ist, dass ab dem 31.Dezember die Umstellung auf die neuen, virtuellen Depots für 2020 auf der Agenda steht.

Nach dem schwachen Vorjahr zeigten sich die Märkte in 2019 wieder von der besseren Seite. So legte der DAX stolze 26,3% zu.

Wie bereits im letzten Jahr wurden 26 Depots geführt. Alle zuvor behandelten Depots wurden weitergeführt, auch wurde kein Depot neu aufgenommen.
Wie bereits gewohnt, bleibt das Sparplan-Depot im Vergleich außen vor, da dessen Charakter mit monatlichen Spareinlagen sich von den anderen Depots prinzipiell unterscheidet.

Von den verbleibenden 25 Depots haben lediglich 4 Depots besser als der DAX abgeschnitten. Dies entspricht einer Quote von 16%, deutlich weniger als die 52% des Vorjahres und gleichzeitig die geringste Quote seit Auflegung der virtuellen Portfolios.

Bevor wir fortfahren, möchte ich die aktuelle Rangliste des Jahres 2019 aufführen. Die farbliche Unterscheidung soll helfen, Strategien mit ähnlicher Performance optisch aufzuzeigen.

 

Platz Vorjahr Strategie Start am: akt. Datum: aktueller Wert Gewinn/ Verlust 2017
1 22 Modifizierte Relative Stärke 04.01.16 27.12.19 37.893,54 € 32,58%
2 16 Trendfolge 28.02.14 27.12.19 40.902,39 € 31,03%
3 21 Relative Stärke nach Levy 21.02.14 27.12.19 47.294,24 € 26,70%
4 15 Schwergewicht 02.01.14 27.12.19 24.088,87 € 26,39%
5 14 DAX 02.01.14 27.12.19 13337,11 26,31%
6 18 Kombinierte Methode 02.01.14 27.12.19 25.638,80 € 25,91%
7 17 Low-Risk-Index 06.01.14 27.12.19 26.218,97 € 25,85%
8 10 Otto Normalverdiener Depot 02.01.14 27.12.19 34.127,35 € 25,65%
9 24 Small Caps Value Growth 02.01.17 27.12.19 21.289,81 € 22,64%
10 12 Sell in Summer 02.01.14 27.12.19 30.593,32 € 22,61%
11 19 Relative Stärke „Sell in Summer“ 21.02.14 27.12.19 43.162,09 € 19,13%
12 7 Dogs of the Dow 02.01.14 27.12.19 29.762,49 € 18,82%
13 5 Foolish Four 02.01.14 27.12.19 23.566,96 € 18,61%
14 4 Low Five 02.01.14 27.12.19 31.991,23 € 17,56%
15 6 Unemotional Value Four 02.01.14 27.12.19 33.788,33 € 16,52%
16 23 Value Depot KBV 02.01.15 27.12.19 29.965,01 € 15,10%
17 8 Low-Risk-5 06.01.14 27.12.19 29.169,08 € 13,56%
18 3 Unemotional Value Four Plus 02.01.14 27.12.19 36.234,32 € 13,41%
19 26 Value Depot „Einfacher,innerer Wert“ 02.01.15 27.12.19 21.338,29 € 11,67%
20 13 Umkehr 28.02.14 27.12.19 31.776,64 € 11,30%
21 20 Kombination 28.02.14 27.12.19 25.662,62 € 9,49%
22 2 Low-2 02.01.14 27.12.19 36.776,77 € 8,56%
23 11 200-Tage-Linie Strategie 02.01.14 27.12.19 23.428,14 € 8,47%
24 25 Value Depot „Feste Kriterien“ 02.01.15 27.12.19 19.627,76 € 4,45%
25 1 Low-1 02.01.14 27.12.19 15.573,04 € 3,71%
26 9 200-Tage-Linie Strategie mit Short 02.01.14 27.12.19 16.614,03 € -7,29%

 

Nicht zum ersten Mal geht das Modifizierte Relative-Stärke Depot als Jahresbester aus dem Rennen. Mit einem Plus von ca. 32,6% liegt die Strategie nur gut 6% vor dem DAX. Betrachten wir das Abschneiden über das ganze Jahr hinweg, so fällt auf, dass das Depot sehr schwach ins Jahr startete und sich bis Sommer dann im Mittelfeld aufhielt, ehe es kontinuierlich Richtung Spitze marschierte.

Mit Rang 3 ist das Relative-Stärke Depot nach Levy (+26,7%) ebenfalls ganz oben zu finden, was aufgrund der engen Verwandschaft zum Modifizierten Relative-Stärke Depot nicht überrascht. Was eher überrascht ist das mäßige Abschneiden (Rang 11) des Relative-Stärke Depot „Sell-in-Summer“, das über 7 Prozent hinter der Levy-Strategie hinterherhinkt. Dies lässt sich einerseits durch die positive Performance der Märkte in den Monaten August und September erklären, in denen die Strategie ja nicht investiert war. Zum anderen führte die Neuzusammensetzung zu einem schwächeren Gesamtergebnis.

Mit dem Trendfolgedepot auf Rang 2 befindet sich eine weitere Strategie, die auf die Trendstärke setzt. Mit einem Zuwachs von 31% wurde liegt Strategie nur knapp hinter dem Spitzenreiter.

Generell hat sich bestätigt, dass in Börsenjahren mit hohen Steigerungsraten auch die Momentumstrategien sehr erfolgreich agieren.

Erstmals ist das Schwergewichtsdepot mit Platz 4 im Vorderfeld zu finden. Werfen wir aber einen Blick in die jüngere und fernere Vergangenheit, so muss davon ausgegangen werden, dass dieses Resultat eher als Ausnahme anzusehen ist.

Direkt hinter dem DAX auf den Plätzen 6 und 7 rangieren mit der Kombinierten Methode und dem Low-Risk-Index zwei Strategien, die das ganze Jahr über mit DAX-Indexzertifikaten bestückt waren. So entspricht das Ergebnis dem des DAX‘ abzüglich kleiner Zertifikatgebühren.

Überzeugend war auch das Resultat des Otto-Normalverdiener-Depots. Nachdem alle 6 Einzelaktien im Plus notieren, reicht es immerhin für Rang 8 bei einem Jahresgewinn von fast 26%.

Erst im dritten Jahr ist das Small Caps Value Growth Depot vertreten. Mit Rang 9 erzielt die Strategie 2019 das beste Resultat mit einer Steigerung um rund 22,6%.
Nur ganz knapp dahinter findet sich das Sell-in-Summer Depot. Mit Ausnahme von Platz 24 im Jahr 2017 erzielte die Strategie immer gute bis durchschnittliche Leistungen.

Das Mittelfeld wird von den Dividendenstrategien besetzt. In guten Börsenphasen wie im aktuellen Jahr konnten die Dividendentitel nicht die Top-Platzierungen des Vorjahres erzielen. Aber Ergebnisse zwischen 13% und 19% und den Plätzen 12 für das Dog of the Dow Depot, 13 für das Foolish Four Depot, 14 für das Low Five Depot, 15 für das Unemotional Value Four Depot und 18 für das Unemotional Value Four Plus Depot sind durchaus passabel.
Die Folgen mangelnder, bzw. fehlender Diversifizierung erlebten dagegen das Low-2 Depot auf Rang 22, sowie das Low-1 Depot auf Rang 25.

Noch im Mittelfeld mit Platz 16 hat sich das Value Depot KBV eingeordnet. Die schlechte Kursentwicklung von Steinhoff Int. Holdings verhinderte in diesem Jahr ein besseres Abschneiden.
Enttäuschend dagegen ist weiterhin die Leistung der beiden weiteren Value Depots „Einfacher, innerer Wert“ auf Rang 19, sowie „Feste Kriterien“ auf Rang 24.

Immer im Bereich zwischen vorderem und hinterem Mittelfeld bleibt auch in 2019 das Low-Risk-5 Depot. Nach den bisherigen Jahren ist zu erkennen, dass sich die Auswahl letztendlich auf relativ wenige DAX-Titel beschränkt.

Weit hinten auf den Plätzen 20 und 21 sind das Umkehrdepot und das Kombinationsdepot zu finden. Beim Umkehrdepot waren mit Continental, Covestro und der Deutschen Bank gleich drei der fünf Aktien nicht am Aufschwung beteiligt. Beim Kombinationsdepot kam mit Wirecard noch ein Wert dazu, der über 20% einbüßte.

Am Ende der Rangliste sind die 200-Tage-Linien Depots zu finden. Für das reine 200-Tage-Linien Depot reichte es nur zu Platz 23, da die Strategie erst Ende April ein Kaufsignal generierte und den vorausgehenden Kursaufschwung verpasste. Für das letztplazierte 200-Tage-Linien Depot mit Shortanteilen war dies doppelt ärgerlich, da in dieser Zeit  Shortanteile im Depot waren, die in dem Zeitraum sogar Kapital vernichteten.

Nachfolgend noch die Rangliste mit der Gesamtperformance. Bitte beachten Sie den unterschiedlichen Startzeitpunkt der Depots.

 

 

Platz Vorjahr Strategie Start am: akt. Datum: aktueller Wert Gewinn/ Verlust
1 1 Relative Stärke nach Levy 21.02.14 27.12.19 47.294,24 € 136,47%
2 2 Relative Stärke „Sell in Summer“ 21.02.14 27.12.19 43.162,09 € 115,81%
3 5 Trendfolge 28.02.14 27.12.19 40.902,39 € 104,51%
4 7 Modifizierte Relative Stärke 04.01.16 27.12.19 37.893,54 € 89,47%
5 3 Low-2 02.01.14 27.12.19 36.776,77 € 83,88%
6 4 Unemotional Value Four Plus 02.01.14 27.12.19 36.234,32 € 81,17%
7 10 Otto Normalverdiener Depot 02.01.14 27.12.19 34.127,35 € 70,64%
8 6 Unemotional Value Four 02.01.14 27.12.19 33.788,33 € 68,94%
9 9 Low Five 02.01.14 27.12.19 31.991,23 € 59,96%
10 8 Umkehr 28.02.14 27.12.19 31.776,64 € 58,88%
11 14 Sell in Summer 02.01.14 27.12.19 30.593,32 € 52,97%
12 11 Value Depot KBV 02.01.15 27.12.19 29.965,01 € 49,83%
13 13 Dogs of the Dow 02.01.14 27.12.19 29.762,49 € 48,81%
14 12 Low-Risk-5 06.01.14 27.12.19 29.169,08 € 45,85%
15 16 DAX 02.01.14 27.12.19 13337,11 38,95%
16 18 Low-Risk-Index 06.01.14 27.12.19 26.218,97 € 31,09%
17 15 Kombination 28.02.14 27.12.19 25.662,62 € 28,31%
18 19 Kombinierte Methode 02.01.14 27.12.19 25.638,80 € 28,19%
19 22 Schwergewicht 02.01.14 27.12.19 24.088,87 € 20,44%
20 20 Foolish Four 02.01.14 27.12.19 23.566,96 € 17,83%
21 17 200-Tage-Linie Strategie 02.01.14 27.12.19 23.428,14 € 17,14%
22 21 Value Depot „Einfacher,innerer Wert“ 02.01.15 27.12.19 21.338,29 € 6,69%
23 25 Small Caps Value Growth 02.01.17 27.12.19 21.289,81 € 6,45%
24 23 Value Depot „Feste Kriterien“ 02.01.15 27.12.19 19.627,76 € -1,86%
25 24 200-Tage-Linie Strategie mit Short 02.01.14 27.12.19 16.614,03 € -16,93%
26 26 Low-1 02.01.14 27.12.19 15.573,04 € -22,13%

 

Es dürfte wenig überraschen, dass nach den Ergebnissen des Jahres 2019 auch bei der Gesamtperformance die Relative-Stärke Strategie nach Levy und „Sell-in-Summer“ die beiden Plätze an der Spitze behauptet haben.
Das Trendfolgedepot konnte von Rang 5 auf Rang 3 vorrücken, das Modifizierte Relative-Stärke Depot verbesserte sich von Rang 7 auf Rang 4. Diese Verbesserungen gingen auf Kosten des Low-2 Depots, das von Rang 3 auf Rang 5 fiel, sowie des Unemotional Value Four Plus Depot, das von Rang 4 auf Rang 6 stürzte.

Deutlich steigern konnten sich auch das Otto-Normalverdiener Depot, das Sell-in-Summer Depot und das Schwergewichtdepot. Schmerzlich dagegen war der Sturz von  Platz 17 auf Platz 21 beim 200-Tage-Linen Depot.

Das Schlusslicht ist weiterhin das Low-1 Depot.
Zu beachten sind die teilweise unterschiedlichen Startzeitpunkte.

Zum Abschluss noch eine Gegenüberstellung auf welchem Rang die Depots in den einzelnen Jahren belegt haben:

 

Strategie Rang Jahres-ende
2014
Rang Jahres-ende
2015
Rang Jahres-ende
2016
Rang Jahres-ende
2017
Rang Jahres-ende
2018
Rang Jahres-ende
2019
Durch-schn.
Rang
             
Modifizierte Relative Stärke 3 1 22 1 6,8
Trendfolge 5 4 1 16 16 2 7,3
Relative Stärke „Sell in Summer“ 4 2 4 8 19 11 8,0
Relative Stärke nach Levy 18 1 6 3 21 3 8,7
Unemotional Value Four Plus 7 21 13 4 3 18 11,0
Otto Normalverdiener Depot 1 6 21 21 10 8 11,2
Low-2 2 18 25 2 2 22 11,8
Dogs of the Dow 8 14 18 12 7 12 11,8
DAX 14 11 9 18 14 5 11,8
Sell in Summer 6 5 16 24 12 10 12,2
Value Depot KBV 3 12 7 23 16 12,2
Umkehr 21 7 7 6 13 20 12,3
Low-Risk-5 17 10 8 14 8 17 12,3
Unemotional Value Four 11 22 15 5 6 15 12,3
Low Five 14 17 20 9 4 14 13,0
Low-Risk-Index 9 13 24 15 17 7 14,2
Kombination 15 8 2 22 20 21 14,7
Foolish Four 13 23 17 17 5 13 14,7
Kombinierte Methode 10 12 19 23 18 6 14,7
Small Caps Value Growth 11 24 9 14,7
Schwergewicht 16 15 14 25 15 4 14,8
Value Depot „Einfacher,innerer Wert“ 9 11 13 26 19 15,6
200-Tage-Linie Strategie 19 16 10 20 11 23 16,5
Value Depot „Feste Kriterien“ 19 5 10 25 24 16,6
Low-1 3 24 23 26 1 25 17,0
200-Tage-Linie Strategie mit Short 22 20 22 19 9 26 19,7

 

Es gilt weiterhin die Aussage aus dem Vorjahr, dass nicht eine Strategie immer im Vorderfeld zu finden ist. Zwar gibt es qualitativ deutliche Unterschiede, aber schwächere Jahre durchleben alle vorgestellten Strategien.

 

Weitere Aussichten

Auch am Jahresende 2019 gilt die Aussage von Mark Twain uneingeschränkt, dass nämlich Prognosen schwierig sind, besonders wenn sie die Zukunft betreffen.
Ausgehend vom Stand jetzt (30.12.2019) erlaube ich mir dennoch den Versuch einer kurzen Einschätzung, versehen mit dem Vermerk:“Wer’s glaubt, ist selbst Schuld“.

Ich sehe die Wahrscheinlichkeit einer ähnlich hohen Kurssteigerung der großen Indizes wie in 2019 für sehr gering an. Hintergrund ist ganz einfach, dass die Börsen zu Beginn des Jahres aus einer Baisse kamen, die Kurse also schon deutlich gefallen waren und somit ein größeres Potential nach oben gegeben war.

Trotzdem sehe ich die Möglichkeit für weiteren, moderaten Aufwärtstrend, da Aktien in Zeiten der Negativzinsen fast alternativlos sind und sich die Bewertungen in den meisten Fällen noch in einem vernünftigen Rahmen bewegen.
Kritisch aus Sicht der Börsen ist dagegen das rückgängige Wachstum vieler Industrienationen zu sehen.

Momentan schlicht nicht einzuschätzen sind politische Faktoren. So bieten augenblicklich Ankündigungen und Handlungen von jenseits des Atlantiks immer wieder „Überraschungspotential“. Dazu gibt es in verschiedensten Regionen Brandherde, deren Entwicklung schwer einzuschätzen ist.

Fazit: Eigentlich hat sich auch in Richtung 2020 nichts geändert. Es gibt Chancen und Risiken.
Also immer wachsam bleiben.

Gebert Strategie

dices-on-stocksDie Strategie basiert auf dem Gebert-Indikator. Namensgeber und Entwickler ist der Physiker Thomas Gebert.

Thomas Gebert war beruflich mit der statistischen Auswertung von Messdaten in Kontakt gekommen und versuchte zu Beginn der 90er Jahre, dieses Wissen auch am Aktienmarkt umzusetzen.

Computergestützt untersuchte er eine Reihe von Wirtschaftsdaten (angeblich sollen auch etwas ungewöhnlich anmutende Faktoren wie beispielsweise Mondphasen in die Untersuchung eingegangen sein). Letztendlich schälten sich vier Einzelkomponenten heraus, die zusammen den Gebert-Indikator bilden. Drei der Komponenten beruhen auf fundamentalen Daten, eine Komponente auf einem saisonalen Kriterium.

Für die Einfachheit des Aufbaus hat der Gebert-Indikator in der Vergangenheit relativ zuverlässige Signale geliefert.

Die vier Komponenten, für die jeweils „0“ oder „1“ Punkt vergeben wird, werden im folgenden Abschnitt vorgestellt:

  1. Inflationsrate
    Eine niedrige Inflationsrate soll auf eine günstige Bewertung des Aktienmarktes, eine hohe somit auf eine überteuerte Bewertung hinweisen.
    Als Basis dient die von Eurostat ermittelte Inflationsrate für die Eurozone. Liegt die aktuelle Inflationsrate tiefer als die Inflationsrate des entsprechenden Monats des Vorjahres, so wird ein Punkt vergeben. Ansonsten werden für diesen Teilindikator null Punkte vergeben.
  2. Euro-Dollar-Kurs
    In der Regel ist ein schwächerer Euro gut für die exportlastige deutsche Industrie. Zudem wird ein starker Dollar mit einer gesunden US-Wirtschaft (Motor der Weltwirtschaft) in Verbindung gebracht.
    Liegt der aktuelle Euro-Dollar-Kurs unter dem Kurs des entsprechenden Vorjahreszeitraums, so wird ein Punkt vergeben. Ansonsten werden auch hier null Punkte verteilt.
  3. Leitzins
    Niedrige Zinsen mindern die Zinszahlungen der Unternehmen für deren Schulden und erleichtern die Aufnahme neuer Kredite. Zudem wird die Attraktivität der Anlage in Aktien erhöht.
    War die letzte Leitzinsänderung der EZB eine Senkung, so wird ein Punkt vergeben.
  4. Saisonalität
    Zwar kann niemand den Grund erklären, doch auf lange Sicht hat der Aktienmarkt im Halbjahr um den Sommer herum schlechter entwickelt als im Winterhalbjahr.
    Deshalb wird in der Zeit zwischen dem 1.November und dem 30.April ein Punkt vergeben. Außerhalb dieser Zeit werden null Punkte vergeben.

Somit werden zwischen null und vier Punkten vergeben. Dabei werden 0 bis 1 Punkt als Verkaufssignal gewertet, 3 bis 4 Punkte als Kaufsignal, während 2 Punkte neutral zu sehen sind – also das letzte Signal bestätigen.

Die Regeln der Gebert Strategie

  1. Die Auswertung erfolgt jeweils zu Beginn eines Monats.
  2. Drei oder vier Punkte generieren ein Kaufsignal. Mit dem einzusetzenden Kapital werden DAX-ETFs gekauft.
  3. Null oder ein Punkt erzeugen ein Verkaufssignal, d.h. alle DAX-ETFs werden verkauft. Das Geld wird vorgehalten bis ein neues Kaufsignal erfolgt.

Vor- und Nachteile der Strategie

Nachteile:

  • Die Strategie ist nur für den deutschen Aktienmarkt ausgelegt.
  • Die Strategie ist eher für den langfristig orientierten Anleger geeignet.
  • Es können längere Zeiträume ohne Investition auftreten.

Vorteile:

  • Die Strategie ist leicht verständlich und einfach nachzuvollziehen.
  • Die Umsetzung erfordert nur einen geringen Zeitaufwand.
  • Die Strategie weist eine hohe Treffsicherheit auf.
  • Durch den Einsatz von ETFs ist die Strategie auch mit kleinem Kapitaleinsatz sinnvoll (somit auch als Depotbeimischung).
  • Durch die klaren Regeln ist die Strategie frei von Emotionen.

Performance der Strategie

 

Auch hier gilt: Renditen aus der Vergangenheit sind keine Garantie für Renditen in der Zukunft.
Der DAX stieg zwischen 1996 und 2018 jährlich um durchschnittlich 8,3 %. Im gleichen Zeitraum erzielte die Gebert Strategie eine jährliche Rendite von 17%.

Sehen wir uns näher an, was aus 10.000 € Startkapital mit diesen Renditen geworden wäre:

 

Bezug Strategie Zeitraum Jährliche Rendite Start-kapital Kapital am Ende des Zeitraums
DAX alle Wert (1) 1996-2018 8,3% 10.000 € 57.604 €
DAX Gebert-Indikator(1) 1996-2018 17,0% 10.000 € 318.974 €

 (1)  Dividendenfluss.de

 

Anmerkung

Auf Wunsch wird die Strategie ab 2020 mit als virtuelles Depot aufgenommen. Obwohl beim Einsatz des Gebert-Indikators eine Rückrechnung möglich wäre, soll darauf verzichtet werden. Die virtuellen Depots sollen wirklich nur mit Start einer Strategie geführt werden, um mögliche Mauscheleien zu unterbinden.
Mehr dazu dann beim virtuellen Depot.

Depotcheck Jahresende 2018

Weighing 1Das Börsenjahr 2018 ist abgeschlossen.
„Gott sei Dank“ – wird wohl die große Mehrheit der Anleger denken. Fast 18,3% verlor der DAX auf Jahresbasis.
Nehmen wir den Höchststand vom 23.01.2018 mit 13596,89 Punkten und den Tiefststand vom 27.12.2018 mit 10279,20 Punkten, kommen wir auf ein Minus von 24,4%, was die Bedingungen für einen Bärenmarkt erfüllt. Aber mehr dazu am Ende des Artikels.

Lassen Sie uns einen Blick darauf werfen, wie die virtuellen Depots unter diesen Umständen abgeschnitten haben.

Im abgelaufenen Jahr wurden 26 Depots geführt. Alle zuvor behandelten Depots wurden weitergeführt, auch wurde kein Depot neu aufgenommen.
Wie schon in den Jahren zuvor bleibt das Sparplan-Depot im Vergleich außen vor, da dessen Charakter mit monatlichen Spareinlagen sich von den anderen Depots unterscheidet.
Von den verbleibenden 25 Depots haben 13 besser als der DAX abgeschnitten, was einer Quote von 52% entspricht. Weniger also als die 68% im Jahr zuvor. Zu den Gründen werden wir im weiteren Verlauf kommen.

Doch bevor wir fortfahren, möchte ich die aktuelle Rangliste des Jahres 2018 aufführen. Die farbliche Unterscheidung soll helfen, Strategien mit ähnlicher Performance optisch aufzuzeigen.

 

Platz Vorjahr Strategie Start am: akt. Datum: aktueller Wert Gewinn/ Verlust 2018
1 26 Low-1 02.01.14 28.12.18 15.016,38 € 4,38%
2 2 Low-2 02.01.14 28.12.18 33.875,45 € -0,02%
3 4 Unemotional Value Four Plus 02.01.14 28.12.18 31.948,58 € -3,77%
4 9 Low Five 02.01.14 28.12.18 27.211,80 € -4,69%
5 17 Foolish Four 02.01.14 28.12.18 19.868,63 € -4,84%
6 5 Unemotional Value Four 02.01.14 28.12.18 28.996,66 € -5,11%
7 12 Dogs of the Dow 02.01.14 28.12.18 25.047,40 € -8,26%
8 14 Low-Risk-5 06.01.14 28.12.18 25.685,17 € -8,68%
9 19 200-Tage-Linie Strategie mit Short 02.01.14 28.12.18 17.919,87 €
-9,34%
10 21 Otto Normalverdiener Depot 02.01.14 28.12.18 27.160,51 € -12,36%
11 20 200-Tage-Linie Strategie 02.01.14 28.12.18 21.598,64 € -12,51%
12 24 Sell in Summer 02.01.14 28.12.18 24.951,07 € -15,83%
13 6 Umkehr 28.02.14 28.12.18 28.550,89 € -16,19%
14 18 DAX 02.01.14 28.12.18 10.558,96
-18,26%
15 25 Schwergewicht 02.01.14 28.12.18 19.058,93 € -18,56%
16 16 Trendfolge 28.02.14 28.12.18 31.216,83 € -18,78%
17 15 Low-Risk-Index 06.01.14 28.12.18 20.834,03 € -18,82%
18 23 Kombinierte Methode 02.01.14 28.12.18 20.362,10 € -20,63%
19 8 Relative Stärke „Sell in Summer“ 21.02.14 28.12.18 36.232,55 € -22,14%
20 22 Kombination 28.02.14 28.12.18 23.438,70 € -23,10%
21 3 Relative Stärke nach Levy 21.02.14 28.12.18 37.328,60 € -27,11%
22 1 Modifizierte Relative Stärke 04.01.16 28.12.18 28.581,34 € -27,74%
23 7 Value Depot KBV 02.01.15 28.12.18 26.033,23 € -29,94%
24 11 Small Caps Value Growth 02.01.17 28.12.18 17.359,67 € -32,01%
25 10 Value Depot „Feste Kriterien“ 02.01.15 28.12.18 18.791,59 € -32,26%
26 13 Value Depot „Einfacher,innerer Wert“ 02.01.15 28.12.18 19.107,50 € -33,49%

 

Als einziges Depot geht das Low-1 Depot mit einem Kursplus (+4,38%) aus dem Börsenjahr.Werfen wir jedoch einen Blick auf die Gesamtperformance, so finden wir das Low-1 Depot am Ende der Rangliste. Mit nur einem Wert ist die Strategie überhaupt nicht diversifiziert und sehr volatil.

Auffällig ist die Tatsache, dass alle 7 Dividendenstrategien auf den ersten sieben Plätzen zu finden sind. Dieser Umstand deutet darauf hin, dass Blue-Chips (DAX-Aktien) mit hoher Dividendenrendite, in schwierigen Börsenphasen gesucht sind, denn Jahresergebnisse zwischen +4,4% und -8,3% sind bei einem Verlust des deutschen Leitindex‘ von 18,65% beachtlich.

Nach den Dividendendepots folgt auf Rang 8 das Low-Risk-5 Depot, das rund 8,7% verliert. Es ist eigentlich folgerichtig, dass Aktien mit niedriger Volatilität relativ gut in Abschwungphasen abschneiden. Zudem war das Depot 4 Wochen lang (05.11.2018 bis 3.12.2018) nicht investiert.

Nur unwesentlich dahinter folgt das 200-Tage-Linien Depot mit Shortanteil. Auf den ersten Blick erscheint es unlogisch, dass diese Strategie bei stark sinkenden Kursen nicht deutlich besser performt hat. Die Ursache liegt darin begründet, dass das Depot nicht durchgehend mit Shortzertifikaten, sondern zweimal mit Longzertifikaten bestückt war, was sich negativ auf das Resultat auswirkte. Sägezahnmärkte – wie sie in 2018 einige Zeit vorkamen – sind für die 200-Tage-Linien Strategien Gift.
Entsprechend landete das reine 200-Tage-Linien Depot ohne Shortanteile auch nur auf Platz 11. Durch die nicht investierte 2.Jahreshälfte schnitt die Strategie dennoch gut 6% besser als der DAX ab.

Zwischen den beiden 200-Tage-Linien Strategien rangiert das Otto-Normalverdiener Depot auf Platz 10. Die diversifizierte Strategie mit DAX-Werten kann sich damit auch wesentlich besser als der breite Markt behaupten.

Im breiten Mittelfeld befinden sich mit dem Umkehr (Platz 13), Trendfolge (Platz 16) und Kombinationsdepot die drei Trendfolgestrategien. Die beiden letztgenannten Depots litten vor allem vom Abschneiden der Commerzbank, die 53,8% an Wert einbüßt. ProSiebenSat1 Media mit einem Minus von 38,6% belastet das Umkehr- und das Kombinationsdepot.

Ebenfalls im Mittelfeld landen mit dem Sell-in-Summer, dem Low-Risk-Index und dem Kombinierte Methode-Depot drei ebenfalls mit DAX-Zertifikaten aufgebaute Strategien. Auf Platz 12 schneidet das Sell-in-Summer Depot am Besten ab, das in den Monaten August und September nicht investiert war. Das Low-Risk-Index Depot erreicht Rang 17 (keine Investition vom 05.11.2018 bis 3.12.2018) vor dem Kombinierten Methode Depot, das zu Jahresbeginn bis in den Februar hinein auf „Verkaufen“ stand.

Das Schwergewichtsdepot beendet das Jahr auf Platz 15 mit fast identischer Performance wie der DAX.

Womit wir zu den Enttäuschungen des abgelaufenen Jahres kommen:
Die drei relative-Stärke Strategien landen auf den Plätzen 19 (Sell-in-Summer), 21 (nach Levy) und 22 (Modifizierte Strategie). Der Verkauf aller Aktien über die Monate August und September lassen die Relative Stärke Strategie „Sell-in-Summer“ mit einer Performance von rund 4% hinter dem DAX noch einigermaßen glimpflich aus dem Jahr kommen, während die beiden anderen Depots mehr als 27% einbüßen, und damit fast 10% schlechter als der deutsche Leitindex laufen.
Trotz des herben Ergebnisses liegen die Momentum-Strategien in der Gesamtauswertung (s.w.u.) ganz, bzw, ziemlich weit vorne. Untersuchungen zeigen die Effektivität der Momentumstrategien. Allerdings wird die Überrendite in Aufwärts- und oft auch in Seitwärtsphasen erzielt, während eine Aktienbaisse negative Auswirkungen auf diesen Typ von Strategien hat.

War das Abschneiden der Relative Stärke Depot enttäuschend, so ist das Resultat der Value-Strategie beinahe katastrophal zu nennen, gab es doch Wertverluste zwischen 30% und 33,5%. Bei jedem der Depots gab es Aktien, die zwischen 50% und 80% verloren haben. Die meist kleineren Werte zeichnen sich durch große Kursschwankungen aus, die es zum einen schwer machen, einen Stopp-Kurs zu finden, und die sich zum anderen bei einem Richtungswechsel auch schnell wieder erholen können, weshalb auf Stopp-Loss-Marken verzichtet wird. Diese Erholung fiel aber 2018 ins Wasser.
Der große Verlust lässt Zweifel an der Tauglichkeit der Strategien aufkommen. Für die Praxis sollten mehrere Punke beachtet werden:
Bei der KBV-Strategie fällt die Klumpenbildung an Bankaktien auf, die 2018 sehr schlecht abgeschnitten haben. Hier wäre eine größere Branchendiversifikation wünschenwert.
Generell sollten die Kriterien regelmäßig überprüft werden und großzügig ausgelegte Stopp-Loss-marken gesetzt werden.

Nachfolgend noch die Rangliste mit der Gesamtperformance. Bitte beachten Sie den unterschiedlichen Startzeitpunkt der Depots.

 

Platz Vorjahr Strategie Start am: akt. Datum: aktueller Wert Gewinn/ Verlust
1 1 Relative Stärke nach Levy 21.02.14 28.12.18 37.328,60 € 86,64%
2 2 Relative Stärke „Sell in Summer“ 21.02.14 28.12.18 36.232,55 € 81,16%
3 7 Low-2 02.01.14 28.12.18 33.875,45 € 69,38%
4 8 Unemotional Value Four Plus 02.01.14 28.12.18 31.948,58 € 59,74%
5 4 Trendfolge 28.02.14 28.12.18 31.216,83 € 56,08%
6 10 Unemotional Value Four 02.01.14 28.12.18 28.996,66 € 44,98%
7 3 Modifizierte Relative Stärke 04.01.16 28.12.18 28.581,34 € 42,91%
8 6 Umkehr 28.02.14 28.12.18 28.550,89 € 42,75%
9 14 Low Five 02.01.14 28.12.18 27.211,80 € 36,06%
10 9 Otto Normalverdiener Depot 02.01.14 28.12.18 27.160,51 € 35,80%
11 5 Value Depot KBV 02.01.15 28.12.18 26.033,23 € 30,17%
12 15 Low-Risk-5 06.01.14 28.12.18 25.685,17 € 28,43%
13 17 Dogs of the Dow 02.01.14 28.12.18 25.047,40 € 25,24%
14 12 Sell in Summer 02.01.14 28.12.18 24.951,07 € 24,76%
15 11 Kombination 28.02.14 28.12.18 23.438,70 € 17,19%
16 18 DAX 02.01.14 28.12.18 10.558,96
10,01%
17 22 200-Tage-Linie Strategie 02.01.14 28.12.18 21.598,64 € 7,99%
18 19 Low-Risk-Index 06.01.14 28.12.18 20.834,03 €
4,17%
19 20 Kombinierte Methode 02.01.14 28.12.18 20.362,10 € 1,81%
20 24 Foolish Four 02.01.14 28.12.18 19.868,63 € -0,66%
21 13 Value Depot „Einfacher,innerer Wert“ 02.01.15 28.12.18 19.107,50 € -4,46%
22 23 Schwergewicht 02.01.14 28.12.18 19.058,93 € -4,71%
23 16 Value Depot „Feste Kriterien“ 02.01.15 28.12.18 18.791,59 € -6,04%
24 25 200-Tage-Linie Strategie mit Short 02.01.14 28.12.18 17.919,87 € -10,40%
25 21 Small Caps Value Growth 02.01.17 28.12.18 17.359,67 € -13,20%
26 26 Low-1 02.01.14 28.12.18 15.016,38 € -24,92%

Trotz des Schwächelns in 2018 sind die Relative-Stärke Depots nach Levy und „Sell-in-Summer“ mit deutlichem Abstand an der Spitze. Das Modifizierte Relative-Stärke Depot ist zwar auf Rang 7 abgerutscht, aber es ist dabei zu beachten, dass das Depot fast zwei Jahre später aufgelegt wurde.

Sämtliche Dividendenstrategiedepots haben sich um 4 bis 5 Plätze verbessert. Das Low-2 Depot ist sogar bis auf Rang 3 vorgerückt. Auch das 200-Tage-Linien Depot rückte 5 Plätze vor.

Wie aus den Ergebnissen des Jahres 2018 zu erwarten, verschlechterten sich alle Value Strategien deutlich.
Trotz Rang 1 in 2018 behält das Low-1 Depot abgeschlagen die rote Laterne.

Zum Abschluss noch eine Gegenüberstellung auf welchem Rang die Depots in den einzelnen Jahren belegt haben:

 

Strategie Rang Jahresende
2014
Rang Jahresende
2015
Rang Jahresende
2016
Rang Jahresende
2017
Rang Jahresende
2018
Durchschn.
Rang
           
Relative Stärke „Sell in Summer“ 4 2 4 8 19 7,4
Trendfolge 5 4 1 16 16 8,4
Modifizierte Relative Stärke 3 1 22 8,7
Unemotional Value Four Plus 7 21 13 4 3 9,6
Relative Stärke nach Levy 18 1 6 3 21 9,8
Low-2 2 18 25 2 2 9,8
Umkehr 21 7 7 6 13 10,8
Value Depot KBV 3 12 7 23 11,3
Low-Risk-5 17 10 8 14 8 11,4
Otto Normalverdiener Depot 1 6 21 21 10 11,8
Dogs of the Dow 8 14 18 12 7 11,8
Unemotional Value Four 11 22 15 5 6 11,8
Sell in Summer 6 5 16 24 12 12,6
Low Five 14 17 20 9 4 12,8
DAX 14 11 9 18 14 13,2
Kombination 15 8 2 22 20 13,4
Value Depot „Einfacher,innerer Wert“ 9 11 13 26 14,8
Value Depot „Feste Kriterien“ 19 5 10 25 14,8
Foolish Four 13 23 17 17 5 15,0
200-Tage-Linie Strategie 19 16 10 20 11 15,2
Low-1 3 24 23 26 1 15,4
Low-Risk-Index 9 13 24 15 17 15,6
Kombinierte Methode 10 12 19 23 18 16,4
Schwergewicht 16 15 14 25 15 17,0
Small Caps Value Growth 11 24 17,5
200-Tage-Linie Strategie mit Short 22 20 22 19 9 18,4

Nach fünf Jahren ist zu erkennen, dass nicht eine Strategie immer im Vorderfeld zu finden ist. Zwar gibt es qualitativ deutliche Unterschiede, aber schwächere Jahre durchleben alle vorgestellten Strategien.

Weitere Aussicht

Wie oben erwähnt hat der DAX vom Höchststand 24,4% eingebüßt, womit wir uns „offiziell“ in einer Baisse befinden.
Die Frage lautet nun: Ist eine Bodenbildung in Sicht oder setzt sich der Abwärtstrend fort?

Leider lässt sich die Frage ohne hellseherische Fähigkeiten nur schwer beantworten. Da uns der Blick in die Zukunft verwehrt ist, bleibt nur der Blick in die Vergangenheit:

Soweit wir auf die letzten 30 Jahre zurückblicken und die Mega-Bärenmärkte „Dot.com-Blase“ (ab 2000) und Finanzkrise (ab 2008), in denen es deutlich mehr als 50% nach unten ging, außer Acht lassen, beliefen sich die Verluste der 5 weiteren Baisse-Phasen zwischen 20% und 35%. Es könnte – muss aber nicht – noch etwas weiter abwärts gehen.

Großen Einfluss dürfte die weitere Entwicklung des Handelsstreites zwischen den USA und China haben. Zudem ist der Brexit ein Thema an den Börsen. Zwar dürften schon einige Risiken in den aktuellen Kursen eingepreist sein, doch sollte tatsächlich zu einem „harten Brexit“ kommen, ist ein weiterer Kursrutsch nicht auszuschließen.

Aber was gilt ist: „Der Markt hat immer Recht“. Also lassen Sie uns schauen, wohin er führt.

Depotcheck Jahresende 2017

Weighing 1Mit deutlicher Verspätung – aber hoffentlich nicht zu spät – wird das Abschneiden der virtuellen Depots für das Jahr 2017 unter die Lupe genommen.

Im abgelaufenen Jahr wurden 26 Depots geführt. Alle zuvor behandelten Depots wurden weitergeführt. Das Small Caps Value Growth Depot wurde neu aufgenommen.
Wie schon in den Jahren zuvor bleibt das Sparplan-Depot im Vergleich außen vor, da dessen Charakter mit monatlichen Spareinlagen sich von den anderen Depots unterscheidet.
Von den verbleibenden 25 Depots haben 17 besser als der DAX abgeschnitten, was einer Quote von 68% entspricht. Deutlich mehr als die 33,3% im Jahr zuvor. Zu den Gründen werden wir im weiteren Verlauf kommen.

Doch bevor wir fortfahren, möchte ich die aktuelle Rangliste des Jahres 2016 aufführen. Die farbliche Unterscheidung soll helfen, Strategien mit ähnlicher Performance optisch aufzuzeigen.

 

Platz Vorjahr Strategie Start am: akt. Datum: aktueller Wert Gewinn/ Verlust 2017
1 3 Modifizierte Relative Stärke 04.01.16 29.12.17 39.556,04 € 71,54%
2 25 Low-2 02.01.14 29.12.17 33.881,71 € 66,15%
3 6 Relative Stärke nach Levy 21.02.14 29.12.17 51.213,97 € 57,24%
4 13 Unemotional Value Four Plus 02.01.14 29.12.17 33.200,04 € 55,92%
5 15 Unemotional Value Four 02.01.14 29.12.17 30.556,69 € 49,61%
6 7 Umkehr 28.02.14 29.12.17 34.065,50 € 44,82%
7 12 Value Depot KBV 02.01.15 29.12.17 37.156,81 € 38,64%
8 4 Relative Stärke „Sell in Summer“ 21.02.14 29.12.17 46.534,37 € 37,31%
9 20 Low Five 02.01.14 29.12.17 28550,06 37,07%
10 5 Value Depot „Feste Kriterien“ 02.01.15 29.12.17 27.740,34 € 28,08%
11 Small Caps Value Growth 02.01.17 29.12.17 25.531,43 € 27,66%
12 18 Dogs of the Dow 02.01.14 29.12.17 27.302,42 € 21,85%
13 11 Value Depot „Einfacher,innerer Wert“ 02.01.15 29.12.17 28.727,20 € 18,95%
14 8 Low-Risk-5 06.01.14 29.12.17 28.126,21 € 15,02%
15 24 Low-Risk-Index 06.01.14 29.12.17 25.665,39 € 13,85%
16 1 Trendfolge 28.02.14 29.12.17 38.434,77 € 13,70%
17 17 Foolish Four 02.01.14 29.12.17 20.878,60 € 13,20%
18 9 DAX 02.01.14 29.12.17 12.917,64 € 12,51%
19 22 200-Tage-Linie Strategie mit Short 02.01.14 29.12.17 19.765,75 € 12,11%
20 10 200-Tage-Linie Strategie 02.01.14 29.12.17 24.687,23 € 12,10%
21 21 Otto Normalverdiener Depot 02.01.14 29.12.17 30.991,69 € 12,09%
22 2 Kombination 28.02.14 29.12.17 30.481,33 € 11,31%
23 19 Kombinierte Methode 02.01.14 29.12.17 25.654,46 € 10,68%
24 16 Sell in Summer 02.01.14 29.12.17 29.643,76 € 6,59%
25 14 Schwergewicht 02.01.14 29.12.17 23.402,49 € 5,30%
26 23 Low-1 02.01.14 29.12.17 14.385,93 € -4,55%

 

Die Top-Performance lieferte das Modifizierte Relative-Stärke Depot ab. Stolze 71,5% kletterte der Wert im Jahr 2017. Einen großen Teil zu dem Resultat trug Siltronic bei, die im Jahreszeitraum um 175% zulegte. Auch Aixtron bewies mit einem Plus von mehr als 83% Stärke, wobei die Aktie nur die zweite Jahreshälfte im Depot war.
Damit schnitt die Modifizierte Relative-Stärke Strategie rund 14% besser ab als die Relative-Stärke Strategie nach Levy, die mit einem Zuwachs von 57,2% auf Rang 3 landete. Dabei war die Anzahl der Aktien die unter dem Jahr ausgetauscht wurden fast gleich (7 bei der modifizierten Variante und 6 bei der Levy Variante), aber in der Regel wurden die Abgänge bei der Modifizierten Relativen-Stärke früher, d.h. zu einem höheren Kurs abgestoßen.
Die Tatsache, dass das Relative-Stärke Depot „Sell-in-Summer“ mit +37,3% auf Rang 8 deutlich dahinter rangiert, ist dem Umstand geschuldet, dass der Zeitraum August und September – in der dieses Depot sinngemäß nicht investiert war – die stärkste Phase für die Strategie war.

Platz 2 belegte mit dem Low-2 Depot eine Dividendenstrategie. Da das Depot nur aus 2 Titeln zusammengesetzt ist, machte sich die enorme Kurssteigerung von Lufthansa um 121,8% entsprechend überproportional bemerkbar.

Generell schnitten die Dividendenstrategien nach zwei schwächeren Jahren in 2017 wieder deutlich besser ab. So belegten das Unemotional Value Four Plus (+55,9%) und das Unemotional Value Four Depot (+49,6%) die Ränge 4 und 5. Neben der bereits erwähnten Lufthansa Aktie konnten hier auch Vonovia und die Deutsche Post gefallen, die sich beide um mehr als 30% verteuerten.
Das Low Five Depot (+37,1%) auf Rang 9 und das Dogs of the Dow Depot (+21,9%) auf Rang 12 bestätigten das Gesamtbild.
Lediglich das Foolish Four Depot (+13,2%) auf Rang 17 trübt das Abschneiden der Dividendenstrategien. Bei der Foolish Four Strategie war Lufthansa nicht im Portfolio. Stattdessen war Pro7Sat1 Media vertreten, die auf Jahresbasis aber 17,4% verlor.

Ebenfalls im „Premium“-Bereich rangiert das Umkehr Depot mit einer Performance von 44,8%. Hier waren Lufthansa und die Commerzbank die Gewinnbringer.

Im vorderen Mittelfeld hielten sich in 2017 die Value Depots auf. Die größte Steigerung weist auf Rang 7 das Value Depot KBV (+38,6%) auf. Kurz danach positionierten sich das Value Depot „Feste Kriterien“ (+28,1%) auf Rang 10, das neue Small Caps Value Growth Depot (+27,7%) auf Rang 11, sowie das Value Depot „Einfacher, innerer Wert“ (+19,0%) auf Rang 13.

Mittendrin bewegen sich die Low-Risk Strategien. Das Low-Risk-5 Depot belegt mit einem Plus von 15% Rang 14. Ein Platz dahinter findet sich das Low-Risk-Index Depot mit einem Zuwachs um 13,9%.

Von Platz 1 in 2016 auf Platz 16 in 2017 ist das Trendfolgedepot abgerutscht. Hier konnte lediglich Infineon mit einer Steigerung um 38,4% überzeugen, alle anderen Titel konnten nur geringe Kursgewinne erzielen, so dass unter dem Strich ein Plus von 13,7% bleibt.

Womit wir zu den Depots kommen, die schlechter als der DAX abgeschnitten haben. Diese werden angeführt von den beiden 200-Tage-Linien Depots, die beide das ganze Jahr 2017 über mit „Long“-Zertifikaten bestückt waren und mit einer Performance von 12,1% die Plätze 19 und 20 belegen. Das minimal schlechtere Abschneiden im Vergleich zum DAX ist mit den Zertifikategebühren zu erklären.

Auf Rang 21 – ebenfalls mit einer Performance von 12,1% – erscheint das Otto-Normalverdiener Depot, dem die Ausreisser nach oben fehlten.
Im selben Bereich (Rang 22 mit +11,3%) bewegt sich das Kombinationsdepot.
Die Plätze 23 und 24 nehmen das Kombinierte Methode (+10,7%) und das „Sell-in-Summer“ Depot (+6,6%) ein. Bei der Kombinierten Methode Strategie erfolgte Miite Juli ein Verkaufssignal, das erst Mitte September wieder aufgehoben wurde, bei der „“Sell-in-Summer“ Strategie sind wir prinzipiell im August und September nicht investiert. Wie bereits bei der Relativen-Stärke Strategie „Sell-in-Summer“ erläutert, war dies eine sehr gute Marktphase, was die unterdurchschnittliche Performance erklärt.

Lediglich 5,3% Zuwachs erreichte das Schwergewichtsdepot und blieb damit auch in 2017 fast traditionell im hinteren Bereich kleben.

Schlusslicht bildet das Low-1 Depot mit einem Minus von rund 4,6%, was erneut die Problematik mit der fehelnden Diversifikation aufzeigt.

Nachfolgend noch die Rangliste mit der Gesamtperformance. Bitte beachten Sie den unterschiedlichen Startzeitpunkt der Depots.

 

Platz Vorjahr Strategie Start am: akt. Datum: aktueller Wert Gewinn/ Verlust
 
1 3 Relative Stärke nach Levy 21.02.14 29.12.17 51.213,97 € 156,07%
2 1 Relative Stärke „Sell in Summer“ 21.02.14 29.12.17 46.534,37 € 132,67%
3 13 Modifizierte Relative Stärke 04.01.16 29.12.17 39.556,04 € 97,78%
4 2 Trendfolge 28.02.14 29.12.17 38.434,77 € 92,17%
5 7 Value Depot KBV 02.01.15 29.12.17 37.156,81 € 85,78%
6 11 Umkehr 28.02.14 29.12.17 34.065,50 € 70,33%
7 22 Low-2 02.01.14 29.12.17 33.881,71 € 69,41%
8 20 Unemotional Value Four Plus 02.01.14 29.12.17 33.200,04 € 66,00%
9 5 Otto Normalverdiener Depot 02.01.14 29.12.17 30.991,69 € 54,96%
10 21 Unemotional Value Four 02.01.14 29.12.17 30.556,69 € 52,78%
11 6 Kombination 28.02.14 29.12.17 30.481,33 € 52,41%
12 4 Sell in Summer 02.01.14 29.12.17 29.643,76 € 48,22%
13 9 Value Depot „Einfacher,innerer Wert“ 02.01.15 29.12.17 28.727,20 € 43,64%
14 19 Low Five 02.01.14 29.12.17 28.550,06 € 42,75%
15 8 Low-Risk-5 06.01.14 29.12.17 28.126,21 € 40,63%
16 18 Value Depot „Feste Kriterien“ 02.01.15 29.12.17 27.740,34 € 38,70%
17 15 Dogs of the Dow 02.01.14 29.12.17 27.302,42 € 36,51%
18 10 DAX 02.01.14 29.12.17 12917,64 34,58%
19 14 Low-Risk-Index 06.01.14 29.12.17 25.665,39 € 28,33%
20 12 Kombinierte Methode 02.01.14 29.12.17 25.654,46 € 28,27%
21 Small Caps Value Growth 02.01.17 29.12.17 25.531,43 € 27,66%
22 17 200-Tage-Linie Strategie 02.01.14 29.12.17 24.687,23 € 23,44%
23 16 Schwergewicht 02.01.14 29.12.17 23.402,49 € 17,01%
24 23 Foolish Four 02.01.14 29.12.17 20.878,60 € 4,39%
25 24 200-Tage-Linie Strategie mit Short 02.01.14 29.12.17 19.765,75 € -1,17%
26 25 Low-1 02.01.14 29.12.17 14.385,93 € -28,07%

 

Im Gesamtzeitraum sticht die Dominanz der Relative-Stärke Strategien ins Auge, wobei zusätzlich zu beachten ist, dass das Modifizierte Relative-Stärke Depot fast zwei Jahre später aufgelegt wurde. Dadurch ist auch der große Sprung von Rang 13 auf Rang 3 zu erklären.
Trotz des schlechteren Abschneidens in 2017 ist das Trendfolgedepot auf mit Platz 4 ganz vorne zu finden. Auf Platz 5 hat sich das Value Depot KBV vorgekämpft. Zwar scheint der KBV-Ansatz prinzipiell gute Ergebnisse zu liefern, dennoch ist bei der aktuellen Ausführung, die sich nur auf den KBV bezieht, eine mangelhafte Diversifikation zu beobachten. So sind 4 der 10 Positionen mit Bankaktien und weitere zwei Positionen mit Versicherungsaktien besetzt.

Einen Sprung von Rang 11 auf Rang 6 schaffte das Umkehrdepot. Extrem verbessert haben sich mit dem Low-2, dem Unemotional Value Four und dem Unemotional Value Four Plus Depot auch einige der Dividendenstrategien.

Viel Boden verlor dagegen das „Sell-in-Summer“ Depot aus den oben aufgeführten Gründen. Das saisonal geführte Depot fiel von Platz 4 auf Platz 12. Vergleichbares gilt für das „Kombinierte Methode“ Depot.

Der deutsche Leitindex DAX fiel von Platz 10 auf Platz 18 zurück. Die bisherigen Daten lassen die Vermutung aufkommen, dass die Summe der Strategien im Vergleich zum DAX umso besser abschneidet, je positiver der Markt läuft. Über einen Zeitraum von nur 4 Jahren bleibt dies allerdings Spekulation.

Lediglich zwei Depots weisen Verluste auf. Dies ist zum einen das 200-Tage-Linien Depot mit Shortanteil. Diese Strategie kann nur Punkten, wenn längere Bärenmarktphasen durchlaufen werden, was bisher nicht der Fall war.
Abgeschlagen am Tabellenende bewgt sich das Low-1 Depot mit einem Gesamtverlust von über 28%. Hier machen sich Folgen des Fehlens jeglicher Diversifikation bemerkbar, das das Depot ja nur in ein Unternehmen investiert ist.

Zum Abschluss noch eine Gegenüberstellung auf welchem Rang die Depots in den einzelnen Jahren belegt haben:

 

Strategie Rang Jahresende
2014
Rang Jahresende
2015
Rang Jahresende
2016
Rang Jahresende
2017
Durchschn.
Rang
         
Modifizierte Relative Stärke 3 1 2,0
Relative Stärke „Sell in Summer“ 4 2 4 8 4,5
Trendfolge 5 4 1 16 6,5
Relative Stärke nach Levy 18 1 6 3 7,0
Value Depot KBV 3 12 7 7,3
Umkehr 21 7 7 6 10,3
Small Caps Value Growth 11 11,0
Value Depot „Einfacher,innerer Wert“ 9 11 13 11,0
Unemotional Value Four Plus 7 21 13 4 11,3
Value Depot „Feste Kriterien“ 19 5 10 11,3
Low-2 2 18 25 2 11,8
Kombination 15 8 2 22 11,8
Low-Risk-5 17 10 8 14 12,3
Otto Normalverdiener Depot 1 6 21 21 12,3
Sell in Summer 6 5 16 24 12,8
Dogs of the Dow 8 14 18 12 13,0
DAX 14 11 9 18 13,0
Unemotional Value Four 11 22 15 5 13,3
Low Five 14 17 20 9 15,0
Low-Risk-Index 9 13 24 15 15,3
Kombinierte Methode 10 12 19 23 16,0
200-Tage-Linie Strategie 19 16 10 20 16,3
Foolish Four 13 23 17 17 17,5
Schwergewicht 16 15 14 25 17,5
Low-1 3 24 23 26 19,0
200-Tage-Linie Strategie mit Short 22 20 22 19 20,8

 

Das Modifizierte Relatie-Stärke Depot als Spitzenreiter war lediglich in zwei Jahren vertreten, weshalb das Ergebnis nicht sehr aussagekräftig ist.
Ansonsten ist nur das Relative-Stärke Depot „Sell-in-Summer“ durchgehend im Vorderfeld zu finden. Alle anderen Depots weisen zumindest ein Jahr auf, in denen die Performance nicht berauschend war.

Diesen Aspekt werden wir uns als Anleger verinnerlichen müssen: Strategien können nicht dauerhaft und in allen Marktphasen eine überdurchschnittliche Performance erzielen. Jede Strategie wird auch schwächere Zeiträume aufweisen.

Auswertung Relative-Stärke Top 7 Strategie

the-litle-lulu-1399624-1598x1062In der jüngeren Vergangenheit ist mehrfach die Frage gestellt worden, ob eine Relative-Stärke Strategie, in der sich jeden Monat wirklich nur die ersten 7 Aktien der RSL-Rangliste des HDAX im Depot befinden, nicht besser abschneidet als die Relative-Stärke Strategie nach Levy.

Diese Strategie – mit dem einzigen Kriterium, Platz 1 bis 7 der Rangliste zu belegen – soll im weiteren Verlauf als Relative-Stärke Top 7 Strategie bezeichnet werden.

Aus rein theoretischer Betrachtungsweise lässt sich keine Beurteilung ableiten, da die Strategie sowohl Vor- als auch Nachteile gegenüber der Levy Strategie hat.

Vor- und Nachteil der Top 7 Strategie

Als Vorteil ist definitiv zu werten, dass die Aktien, die ihr Momentum verlieren, früher abgestoßen werden. Erfolgt der Verkauf nach Levy erst ab Ranglistenplatz 76, würde dies bei der Top 7 Strategie bereits ab Ranglistenplatz 8 geschehen.

Gleichzeitig birgt diese Vorgehensweise aber auch Nachteile: So sollte die Anzahl der Transaktionen deutlich nach oben steigen.
Auch erzielt keine Momentum-Aktie eine konstante Kurssteigerung. Vielmehr erfolgt nach einem zwischenzeitlichen Anstieg meist eine kurze Konsolidierungsphase, ehe der Aufschwung weiter geht. So ist es bei der Top 7 Strategie durchaus möglich, dass Aktien während der Verschnaufpause verkauft werden, um anschließend zu höheren Kursen wieder gekauft zu werden.

Grundlagen der Auswertung

Auswertungszeitraum ist vom 21.02.2014 bis zum 31.07.2018.
Unglücklicherweise fehlen für zwei Monate aus dem Jahr 2014, so dass für diese Monate die Zusammensetzung des Top 7 Depot beibehalten wurde. Für die Gesamtauswertung sollte sich die Folgen in Grenzen halten.
Ferner wurde bei der Auswertung auf Dividenden verzichtet, da dies den Aufwand deutlich erhöht hätte. Dafür werden weiter unten die Dividenden hochgerechnet – verbunden mit einigen Anmerkungen.

Vergleich der Transaktionen

Die Anzahl der Verkäufe und die Transaktionskosten sehen wie folgt aus:

 

Vergleich Relative-Stärke Strategien: Transaktionen
Typ Relative-Stärke nach Levy Relative-Stärke
Top 7
Gesamtanzahl Verkäufe 55 176
Transaktionskosten gesamt 1.505,67 € 4.689,55 €

Wie im Vorfeld vermutet, ist die Anzahl der Transaktionen – und entsprechend der Transaktionskosten – bei der Top 7 Strategie deutlich höher. Im Vergleich zur Levy Strategie sprechen wir über den Faktor „3“.

Was bei den Transaktionskosten noch nicht berücksichtigt ist, ist der „Spread“, also die Differenz zwischen An- und Verkaufskurs. Aufgrund fehlender historischer Daten zum Spread beruht die Auswertung auf der Annahme, dass An- und Verkaufskurs identisch sind.
Dies ist bei vielgehandelten Aktien (z.B. DAX-Aktien) auch überwiegend gegeben oder zumindest vernachlässigbar. Bei Aktien mit geringerem Handelsumsatz, was auf TecDAX-Werte häufig zutrifft, hat der Unterschied durchaus Einfluss auf das Ergebnis.
Da sich in der Mehrzahl TecDAX-Aktien im Depot befinden, wird die Performance bei vermehrten An- und Verkäufen somit noch mehr leiden.

Performance der Strategie

Die nachfolgenden Auswertungen beziehen sich auf ein Startkapital von 20.000 € und den oben erwähnten Auswertungszeitraum.

 

Vergleich Relative-Stärke Strategien: Performance
Typ Relative-Stärke nach Levy Relative-Stärke
Top 7
DAX
Gesamtperformance absolut in € 47.570,19 € 46.487,02 € 12805,50
Gesamtperformance in % 137,85% 132,44% 32,61%

Die Relative-Stärke Strategie nach Levy schneidet unter den angegebenen Kriterien etwas besser ab als die Top 7 Strategie.
Beide Strategien schneiden deutlich besser ab als der DAX im gleichen Zeitraum.

Nun wollen wir beim Top 7 Depot noch die Dividenden mit dazu nehmen. Der Einfachheit halber wird davon ausgegangen, dass diese denselben Wert wie beim Levy Depot haben.

 

Vergleich Relative-Stärke Strategien: Performance Dividendenausgleich
Typ Relative-Stärke nach Levy Relative-Stärke
Top 7
Depotwert absolut in € 47.570,19 € 48.106,49 €
Gesamtperformance in % 137,85% 140,53%

Mit dem Dividendenzuschlag hat nun das Top 7 Depot minimal die Nase vorne. Dabei wurde nicht berücksichtigt, dass Dividenden reinvestiert werden und somit vom Gewinnwachstum profitieren.
Der Effekt dürfte sich aber in etwa dadurch ausgleichen, dass durch die sehr viel größere Anzahl an Transaktionen, Verluste durch den Spread auflaufen.
Aber egal wie wir es drehen und wenden, größenordnungsmäßig können wir feststellen, dass beide Strategien ungefähr die gleiche Performance aufweisen.

Nun wollen wir die Performance noch auf die einzelnen Jahre herunter brechen:

 

Vergleich Relative-Stärke Strategien: Jahres-Performance
Typ Relative-Stärke nach Levy Relative-Stärke
Top 7
Depotwert 30.12.2014 absolut in € 20.006,58 € 20.679,60 €
Performance 2014 in % 0,03% 3,40%
Depotwert 30.12.2015 absolut in € 29.868,89 € 28.151,00 €
Performance 2015 in % 49,30% 36,13%
Depotwert 30.12.2016 absolut in € 32.571,24 € 34.734,76 €
Performance 2016 in % 9,05% 23,39%
Depotwert 30.12.2017 absolut in € 51.213,97 € 50.618,34 €
Performance 2017 in % 57,24% 45,73%
Depotwert 31.07.2018 absolut in € 47.570,19 € 46.487,02 €
Performance 2018 in % -7,11% -8,16%

Die Daten vermitteln den Eindruck, dass die Top 7 Strategie in sehr guten Jahren etwas hinterherhinkt, ansonsten aber ihre Vorteile hat. Durch die geringe Anzahl an Beobachtungsjahren muss diese Erkenntnis aber in den Bereich der Vermutung gestellt werden.

In der nächsten Tabelle wollen wir noch die Modifizierte Relative-Stärke Strategie in den Performance-Vergleich mit aufnehmen.

 

Vergleich Relative-Stärke Strategien: Performance
Typ Relative-Stärke nach Levy Relative-Stärke
Top 7
Modifizierte Relative-Stärke nach Levy
Gesamtperformance absolut in € 47.570,19 € 46.487,02 € 70.851,70 €
Gesamtperformance in % 137,85% 132,44% 254,26%

Im Beobachtungszeitraum weist die Modifizierte Relative-Stärke Strategie eine deutlich bessere Performance auf als die zuvor untersuchten Strategien.
Bei der Modifizierten Relative-Stärke Strategie wird neben dem Ausstiegskriterium der Levy Strategie auch ein Verkaufssignal erzeugt, sobald der RSL130 kleiner als „1“ wird (bei der neueren Variante auch, wenn der RSL130 kleiner als der Durchschnittswert aller Aktien wird, was bei dieser Auswertung aber nicht unersucht wurde).
In der Regel wird dadurch früher verkauft als bei der Levy-Variante, aber nicht so früh wie bei der Top 7 Variante. Damit fallen Aktien, die eine kurze „Verschnaufpause“ einlegen, nicht gleich aus dem Depot.

Soweit die Daten aus einem eingeschränkten Beobachtungszeitraum von rund 4,5 Jahre dies erlauben, scheint der Mittelweg der Modifizierten Relative-Stärke Strategie ein goldener Mittelweg zu sein.

200-Tage-Linien Strategie mit 5% Kriterium

KalenderDie 200-Tage-Linie Strategie, die beim virtuellen Depot verwendet wird, basiert auf dem 3%-Kriterium. D.h. ein Verkauf der Wertpapiere erfolgt erst nachdem der DAX-Kurs mindestens 3% unter die 200-Tage-Linie gefallen ist. Analog erfolgt ein Neueinstig erst, sobald der Kurswert mindestens 3% über der 200-Tage-Linie notiert.

Vor kurzem kam der Hinweis, dass bei Euro-am-Sonntag die 200-Tage-Linien Strategie mit einem 5%-Kriterium eingesetzt wird, verbunden mit der Frage, welche Strategie erfolgreicher ist.

Ein klarer Fall für einen Backtest, da sich die Frage ohne Daten nur schwerlich beantworten lässt. Was wir aber im Vorfeld machen können, sind eine Überlegungen zu den beiden Versionen der 200-Tage-Linien Strategie.

Vorüberlegungen zu den 200-Tage-Linien Strategien mit 3% und 5%-Kriterium

Ein Grund, warum die Frage nicht aus dem Stegreif beantwortet werden kann, liegt darin begründet, dass beide Varianten ihre Vor- und Nachteile haben. Eigentlich ist es jeweils nur ein Vor- und ein Nachteil:

  • Vorteil des 3%-Kriteriums ist, dass die Signale früher gebildet werden. Bei einem Verkaufssignal wird früher und dadurch in der Regel zu einem höheren Kurs verkauft, bei einem Kaufsignal wird  früher und dadurch in der Regel zu einem tieferen Kurs gekauft.
  • Was der Vorteil des 3%-Kriteriums ist, ist gleichzeitig sein Nachteil: Fehlsignale werden nicht so schnell erkannt wie beim 5%-Kriterium. Fällt der Kurs beispielsweise 3,1% unter die 200-Tage-Linie und steigt anschließend wieder, so wird erst bei einem Kurs von ab 3% über der 200-Tage-Linie wieder gekauft. Dadurch hat die Strategie rund 6% Performance eingebüßt (lässt sich theoretisch nicht ganz genau bestimmen, da der Wert der 200-Tage-Linie sich täglich ändert).

Anzahl der Kauf-/Verkaufssignale beim 3% und 5%-Kriterium

Werfen wir einen Blick auf die Anzahl der Käufe und Verkäufe für beide Versionen im Zeitraum vom 02.01.2007 bis zum 19.08.2018.

 

Typ Bezeichnung Anzahl Käufe Anzahl Verkäufe
       
1 mit 3%-Toleranz ohne Short 6 6
2 Mit 5%-Toleranz ohne Short 4 4
3 DAX Buy-and-Hold 1 0

Die Daten bestätigen die Überlegung, dass bei der 3%-Variante häufiger Kauf- bzw. Verkaufssignale gebildet werden. Prozentual wurden im Beobachtungszeitraum bei dieser Variante 50% mehr Transaktionen durchgeführt.

Ergebnisse des Backtest für das 3% und 5%-Kriterium

Auch diese Resultate beziehen sich auf den Zeitraum vom 02.02.2007 bis zum 19.08.2018.
Es wurden die Transaktionskosten mit eingerechnet wie bei den virtuellen Depots (9 € + 1 Promille des Kauf-/Verkaufsbetrages).
Die Auswertung erfolgte mit XETRA-Schlusskursen. Nach Signalwechseln wurde am Folgetag zum Eröffnungskurs ge- oder verkauft.

 

Typ Bezeichnung Startwert absolut
02.01.2007
Endwert absolut
19.08.2018
Rendite absolut [%] Rendite jährlich [%]
           
1 mit 3%-Toleranz ohne Short 20.000,00 € 37.154,85 € 85,77% 5,39%
2 Mit 5%-Toleranz ohne Short 20.000,00 € 38.443,95 € 92,22% 5,69%
3 DAX Buy-and-Hold 6614,73 12210,55 84,60% 5,33%

 

Im Beobachtungszeitraum schnitt die 200-Tage-Linien Strategie mit dem 5%-Kriterium absolut knapp 6,5% besser ab als mit dem 3%-Kriterium, auf die jährliche Rendite bezogen waren es 0,3%.

Doch sind hierzu noch einige Anmerkungen zu machen:
Auffällig ist der geringe Unterschied in der Performance zwischen den drei dargestellten Varianten. So ist die Rendite zwischen der DAX „Buy-and-Hold“-Strategie und der 200-Tage-Linien Strategie mit dem 3%-Kriterium fast identisch.
Dies war nicht durchgehend so. Bei der früheren Auswertung zur 200-Tage-Linien Strategie, die auf dem Zeitraum zwischen dem 02.01.2007 und dem 30.12.2013 beruhte, betrug die jährliche Rendite der 3%-Strategie 8,05% gegenüber 5,39% der „Buy-and-Hold“ Strategie.

Der Hintergrund lässt sich sehr gut anhand von drei Gedankenspielen erläutern:

  1. Was geschieht, wenn der DAX permanent steigen und immer über der 200-Tage-Linie notieren würde?
    Wir wären mit unserer Strategie immer investiert und würden dem DAX folgen. Lediglich die Verwaltungskosten für die Wertpapiere würden die Rendite rein gegenüber dem DAX minimal schmälern.
  2. Was geschieht, wenn der DAX sich ständig in einer Art Sägezahnmarkt um einige Prozent auf und abbewegt?
    Diese Frage wurde bereits weiter oben beantwortet: wir würden ständig zu tiefen Kursen verkaufen und zu höheren Kursen einsteigen. In Folge wäre der Performance unserer Strategie deutlich schlechter als die des DAX‘.
  3. Was geschieht, wenn der DAX kontinuierlich von Bullenmärkten zu Bärenmärkten und umgekehrt wechseln würde?
    Bei Bärenmärkten würden mit der 200-Tage-Linien Strategie nach einiger Zeit die Verkaufssignale greifen und könnten ausreichen Cash vorhalten, um in Bullenmärkten wieder einzusteigen.

Szenario 1 wäre der neutrale Fall, bei dem die alle Strategien in dieselbe Richtung laufen.
Szenario 2 ist der „Worst Case“ für die 200-Tage-Linien Strategien, wobei die 5%-Kriterium Strategie noch etwas besser abschneidet.
Szenario 3 ist der Traum aller Investoren, die die 200-Tage-Linien Strategie umsetzen. Hier würde die 3%-Kriterium Strategie etwas besser abschneiden, da Ein- und Ausstieg früher erfolgen.

Dadurch lassen sich auch die Resultate erklären: Bei der Überprüfung im Zeitraum bis Ende 2013 kam der durch die Finanzkrise ausgelöste Bärenmarkt prozentual mehr zum Tragen, gefolgt von einem Bullenmarkt. In jüngerer Vergangenheit ist der DAX eher in Richtung Sägezahnmarkt unterwegs, zwar noch nicht extrem ausgeprägt, aber doch so, dass er Spuren hinterlässt.

Monte-Carlo-Simulation von Aktienkursen Teil 2

monte-carloIm ersten Teil zur Simulation von Aktienkursen mit der Monte-Carlo Methode wurde eine einzelne, zufällige Kursbewegung erstellt.
Doch das Prinzip der Monte-Carlo-Simulation besteht nicht aus der Berechnung eines einzelnen Ergebnisses, sondern aus der Auswertung einer Vielzahl von zufälligen Ergebnissen.
Wer also den genauer Kurs einer Aktie in einem Jahr wissen will, sollte sich an den Wahrsager seiner Wahl wenden. Wer aber den wahrscheinlichen Kursbereich, in dem sich eine Aktie in einem Jahr bewegen könnte, liegt mit der Monte-Carlo Simulation richtig.

Die Grenzen der Simulation wurden bereits im ersten Teil angesprochen, und ich möchte sie an dieser Stelle wiederholen, damit keine Missverständnisse aufkommen:
Die Resultate beruhen auf historischen Daten. Ändern sich also die Rahmenbedingungen wie das Marktumfeld (z.B. Eintritt in Rezession) oder unternehmensspezifische Kriterien (z.B. Wettbewerb, Herstellungskosten, Produktakzeptanz etc.), wird eine Neubewertung erforderlich.
Zum Ende des Artikels werden wir nochmals auf einige Einsatzmöglichkeiten zurückkommen.

Doch vorab soll in vier weiteren Schritten, die Simulation und deren Auswertung fertiggestellt werden.

Schritt 9 – Kursermittlung zusammenfassen

Bisher mussten zur Kursermittlung drei Spalten verwendet werden. Im weiteren Verlauf soll dies in nur einer Spalte umgesetzt werden. Dazu schauen wir uns den Aufbau an:
9-Kursermttlung_1bDer erste zufällig ermittelten Kurs ist in der Zelle „F3“ zu finden, da in „F2“ ja der letzte Kurs der historischen Daten als Startwert verwendet werden muss. Für die Kursberechnung wird nun der Startwert (F2) und die Zufallsänderung in Spalte „E“ benötigt.
Nun werfen wir einen Blick auf die Spalte „E“:

9-Kursermttlung_2bWir wollen nun in Spalte F3 den Wert von E3 durch die Formel in E3, also „KKLEINSTE($C$2:$C$253;D3)“ ersetzen, was dann wie folgt aussieht:

9-Kursermttlung_3bAus Spalte „E“ wird nun kein Wert verwendet, womit die Spalte gelöscht werden kann.

9-Kursermttlung_4bDer Kurs steht nun in Spalte „E“. Excel hat – wie alle mir bekannten Tabellenverarbeitungsprogramme – die schöne Eigenschaft, dass die Bezüge auf Spalten nach dem Löschen oder Hinzufügen einer Spalte angepasst werden, solange diese nicht durch die Verwendung des „$“-Zeichens einen festen Bezug erhalten haben. Somit wurde unter „F3 = F2*EXP(…“ automatisch „E3 = E2*EXP(…“.

Ab Zelle „E4“ erscheint nun aber die Fehlermeldung „#BEZUG!“. Hintergrund ist ganz einfach, dass die Formel ab der Zelle noch nicht angepasst wurde und entsprechend noch nach dem Inhalt der gelöschten Spalte „E“ gesucht wird. Das Problem wird im weiteren Verlauf durch Übernahme der Formel zur Kursermittlung auf die weiteren Zellen behoben werden.

Nachdem Spalte „E“ eliminiert wurde, erfolgt nur noch der Aufruf des Wertes in Spalte „D“, bezogen auf „E3“ der Aufruf von „D3“ innerhalb der Formel „KKLEINSTE“.
„D3“ beinhaltet folgende Formel:

9-Kursermttlung_5bSomit müssen wir den Ausdruck „D3“ in Spalte „E“ lediglich noch durch dessen Inhalt „ZUFALLSBEREICH(1;252)“ ersetzen, was dann wie folgt aussieht:

9-Kursermttlung_6bNun können wir auch Spalte „D“ löschen.
Um nun die Bezugsfehler zu beheben, klicken wir auf die Zelle „D3“.

9-Kursermttlung_7bEin kleines, schwarzes Quadrat wird sichtbar. Sobald Sie mit der Maus in den Bereich des Quadrates kommen, erscheint am Cursor ein schwarzes Kreuz. Halten Sie nun die linke Maustaste gedrückt und bewegen Sie den Cursor bis zur letzten Zeile mit der Fehlermeldung. Damit werden die Inhalte kopiert und die Fehlermeldungen verschwinden.

Falls Sie noch das in Teil 1 erstellte Diagramm auf dem Tabellenblatt haben, werden Sie nun einen neuen Chartverlauf sehen. Bei mir sieht er augenblicklich folgendermaßen aus:

9-Chart_8Bitte beachten Sie, dass nach jeder Änderung im Tabellendokument neue Zufallszahlen erzeugt werden und somit auch das Diagramm jedesmal angepasst wird. Deshalb sind in den Screenshots oben auch unterschiedliche Werte zu finden, obwohl die selben Zellen angezeigt werden.
Mit der Funktionstaste „F9“ können die Zufallszahlen auch ohne Änderungen aktualisiert werden.

Schritt 10 – Viele Zufallskurse anzeigen

Wie bereits mehrfach erwähnt, ist es das Ziel der Monte-Carlo-Simulation, viele zufällige Kurse zu erzeugen. Dazu haben wir nun die Voraussetzungen geschaffen. Es ist lediglich noch ein kleines Problem aus dem Weg zu räumen:

10-Kursermttlung_1b Lassen Sie uns Spalte „D“ markieren, den Cursor auf das schwarze Quadrat platzieren und gedrückt halten, während wird die Kursdaten auf Spalte „E“ kopieren. Unglücklicherweise kann es dabei leicht vorkommen, dass die Spaltenbreite verändert wird, anstatt dass die Spalte kopiert wird. Deshalb empfiehlt es sich, das Quadrat knapp unterhalb der Linie anzuwählen.

10-Kursermttlung_2bMit den hier verwendeten daten steht nun -0,01 € in Spalte „E“. Ein Blick auf die Formel zeigt, dass wir hier auf die Zelle „C2“ zugreifen, statt auf „B2“, wo unsere Schlusskurse zu finden sind. Das Problem lässt sich sehr einfach beheben, indem in Spalte „D2“ ein Dollarzeichen vor den Spaltenwert in der Formel gesetzt wird. Also aus „=B2“ wird „=$B2“.

10-Kursermttlung_3bNun kann Spalte „D“ viele Male in die nachfolgenden Zeilen – wie beschrieben – kopiert werden.
Der Übersichtlichkeit halber habe ich nur 100 Kursdaten verwendet. In der Praxis werden es deutlich mehr sein.
Hier ein Auszug:

10-Kursermttlung_4Als Liniendiagramm sieht das ganze dann wie folgt aus:

10-Kursermttlung_5Erstellt wurde das Diagramm, indem alle Kursdaten (hier von D2 bis CY254) markiert wurden und anschließend über „Einfügen“ – „Diagramm“ – „Liniendiagramm“ der Typ ausgewählt wurde.

Schritt 11 – Auswertung

Vorab an dieser Stelle nochmals der Hinweis, dass die Verwendung der Monte-Carlo-Simulation nur solange Sinn macht, soweit die unternehmensspezifischen und marktspezifischen Rahmenbedingungen nicht deutlich von denen der historischen Daten abweichen.

Auch lässt sich das Thema Auswertung hier nur stiefmütterlich behandeln, da diese sich letztendlich nach dem Zweck des jeweiligen Benutzers richtet.

Wie weit die historischen Daten zurückreichen sollen und über welchen Zeitraum die Simulation laufen sollte, ist ebenfalls abhängig von der Zielsetzung.
Die Monte-Carlo-Simulation wird z.B. beim Einsatz von Hebelprodukten verwendet, um das Risiko eines Totalverlustes oder eines selbst gewählten Stopp-Loss zu berechnen. Da hier meist kürzer Haltezeiten als beim Kauf von Aktien geplant sind, wird auch der Zeitraum der verwendeten historischen Daten und der Simulation kürzer sein (z.B. 3 Monate, sofern es sich nicht um Daytrading handelt). Im weiteren Verlauf werden wir zu dieser Art der Auswertung ein Beispiel sehen.

Im folgenden werden einige Möglichkeiten der Auswertung vorgestellt:

11-Auswertung_1bMit der Formel „KKLEINSTE“ lässt sich der kleinste Wert aus dem gesamten Wertebereich der Simulation auslesen. In dem speziellen Fall war dies 113,59 €.

11-Auswertung_2bMit der Formel „KGRÖSSTE“ lässt sich der größte Wert aus dem gesamten Wertebereich der Simulation auslesen. In dem Fall  372,85 €.

11-Auswertung_3bEine weitere Möglichkeit ist die Bildung von Mittelwerten (also Durchschnittskursen) zum Schlusstag. Dies lässt sich selbstverständlich für jeden beliebigen Tag im Beobachtungszeitraum erstellen.
Hier wurde bewusst darauf verzichtet, einen Mittelwert über den gesamten Simulationszeitraum zu erstellen, da zu Beginn die Abweichungen sehr gering sind und damit das Gesamtergebnis nicht repräsentativ ist.

11-Auswertung_4bInteressant ist die Anzahl der Schlusskurse, die höher notieren als der Startkurs. Umgesetzt wird dies mit der „ZÄHLENWENN“-Funkion. Da die Simulation über 100 Spalten abläuft, entspricht der Wert „69“ hier auch dem prozentualen Verhältnis.
Anstelle des Zählkriteriums bezogen auf die Zelle B2 „>“ &B2 könnte der Anfangskurs auch direkt in der Form „>175,80“ eingetragen werden.

11-Auswertung_5bHier werden aufgrund der Übersictlichkeit lediglich 100 Simulationen durchgeführt. In der Praxis sollten mindestens 1000 Simulationen pro Durchlauf erfolgen. Zusätzlich verbessern lässt sich das Ergebnis, wenn erzielte Resultate kopiert und die reinen Werte in weiteren Zellen eingefügt werden, um ein breiteres Ergebnisspektrum vorliegen zu haben.

11-Auswertung_6bIm Vorfeld wurde bereits darauf hingewiesen, dass es sinnvoll sein kann die Anzahl der Kurse unter (oder auch über) einem festgelegten Sollwert auszuwerten. Auch diese Auswertung wird mit der Funktion „ZÄHLENWENN“ umgesetzt.
In diesem Simulationslauf waren 1542 Kurse unterhalb des Schwellkurses. Allerdings ist der reine Zahlenwert nicht sehr aussagekräftig.

11-Auswertung_7bDeshalb setzen wir die Anzahl der Kurse unter dem Schwellwert in Bezug zu allen Kursdaten. Da dies auf manuellem Wege sehr mühsam werden kann, verwenden wir hierzu die Funktion „ANZAHL2“, die alle Zellen im Datenbereich zählt, die nicht leer sind, was auf unsere simulierten Daten ja zutrifft.

Soweit die Ausführungen zum Thema Monte-Carlo-Simulation. Über Kritik, Fragen und Anregungen würde ich mich freuen.

 

Monte-Carlo-Simulation von Aktienkursen Teil 1

fourAls Fortführung der Beiträge zu „Monte-Carlo-Simulationen“ wird in zwei Artikeln das Thema „Simulation der Bewegungen von Aktienkursen“ behandelt.

In Teil 1 wird die Grundlage vorgestellt, die es ermöglicht, eine zufällige Kursbewegung zu ermitteln und diese in einem Diagramm darzustellen.

Da es nicht Sinn und Zweck der Monte-Carlo-Simulation ist, eine einzelne oder einige wenige Zufallsergebnisse zu ermitteln, sondern eine sehr große Anzahl von Zufallsergebnissen, werden in Teil 2 die Berechnungen so zusammengefasst, dass es auf einfache Weise möglich ist, viele Ergebnisse abzurufen und grafisch darzustellen.

Zur Erläuterung der Funktionsweise werden im Folgenden als Datenbasis die Tagesschlusskurse von Adidas über einen Zeitraum von einem Jahr verwendet. Je nach Zielsetzung sollten für die Auswertung längere Zeiträume in Betracht gezogen werden (gegebenenfalls mit Wochenschlusskursen).

Dazu gilt: Die Ergebnisse sind umso aussagekräftiger je mehr die aktuellen unternehmensspezifischen und marktspezifischen Rahmenbedingungen denen der historischen Daten entsprechen. Sollten beispielsweise neue, aggressive Wettbewerber auftauchen, oder sollte eine Wirtschaftskrise aufkommen, so sind die Resutate mit Skepsis zu betrachten.
Sind die Simulationen dadurch nicht nutzlos?
Meine Einstellung dazu lautet, die Simulationen sind nicht nutzlos, allerdings sollten die entsprechenden Aktien in Ihrem Portfolio oder auf Ihrer Watchlist ständig beobachtet werden. Ändern sich die Grundlagen, so sollten Sie die Reißleine ziehen oder eine neue Simulation mit aktuellen Zahlen durchführen.

Doch nun genug der Vorworte, kommen wir zur Umsetzung, die Schritt für Schritt vorgestellt wird.

Schritt 1 – Download der Kursdaten

1-Adidas_Kurse_DownloadFür die Simulation wurden die Xetra-Kurse von Adidas für den Zeitraum vom 27.04.2017 bis zum 24.07.2018 von „Ariva“ heruntergeladen. Den Service, die Kursdaten als csv-Datei zu exportieren, bieten aber die meisten bekannten Finanz- und Börsenportale an.

 

Schritt 2 – Öffnen der Datei mit Excel

Nach dem Öffnen der Datei sieht die Tabelle auszugsweise wie folgt aus:

1-Adidas_Kurse_aktuell_csv

Schritt 3 – Tabelle aufbereiten

Alle Spalten ausser dem Datum und der Schlusskurse werden gelöscht, da sie nicht benötigt werden. Die Schlusskurse werden als Währung mit dem €-Zeichen formatiert.

2-Adidas_Kurse_aktuell_bearbSchritt 4 – Tägliche Kursänderungen berechnen

Für Spalte C wird die Überschrift „Kursänderung“ eingetragen und in die Zelle C2 wird die Formel „=LN(B2/B3)“ eingesetzt. Anschließend wird die Formel für die restlichen Zellen in Spalte C übernommen.

3-Kursänderungen_bIn der letzten Zelle der Spalte erscheint eine Fehlermeldung, da der Zelle „B255“ keinen Wert enthält.

4-Kursänderungen_bDeshalb wird Zelle C254 gelöscht.

Schritt 5 – Zufallszahlen ermitteln

Für Spalte D wird die Überschrift „Zufallszahl“ eingetragen und in die Zelle D2 wird die Formel „=ZUFALLSBEREICH(1;252)“ eingesetzt. Anschließend wird die Formel für die restlichen Zellen in Spalte D übernommen.
Die Funktion „ZUFALLSBEREICH“ gibt eine ganze Zufallszahl aus dem definierten Bereich aus. Hier also eine Zahl zwischen 1 und 252. Der Bereich ergibt sich aus der Anzahl von Zeilen mit Daten zu Kursveränderungen (von 2 bis 253 => 252).

5-Zufall_bSchritt 6 – Zufällige Kursänderungen ermitteln

Für Spalte E wird die Überschrift „Zufallsänderung“ eingetragen und in die Zelle E2 wird die Formel „=KKLEINSTE($C$2:$C$253;D2)“ eingesetzt. Anschließend wird die Formel für die restlichen Zellen in Spalte D übernommen.

6-Zufallsänderung_bDie Formel dürfte etwas erklärungsbedürftig sein. Der Bereich $C$2:$C$253 bezieht sich die Werte aller Kursänderungen in der Spalte C. Der Bereich wurde mit den $-Zeichen (Konstante) versehen, um die Zellen nach unten kopieren zu können, ohne den Inhalt zu verändern. Der Wert von „D2“ bezieht sich auf die Zufallszahl, die ermittelt wurde.
Die Formel in „E2“ bedeutet also, dass aus dem Datenbereich zwischen C2 und C253 der 241. kleinste Wert verwendet wird. Dazu noch ein kleines Beispiel:

6-Zufallsänderung_BspIn Spalte F haben wir eine Datenreihe mit 10 Zahlen. Mit der Formel wird oben nun der kleinste Wert aus der Datenreihe gesucht (also 1), danach der zweitkleinste Wert (also 2) etc.

 Schritt 7 – Kursentwicklung berechnen

Für Spalte F wird die Überschrift „Kurs“ eingetragen und in die Zelle F2 wird auf den letzten Kurs der verfügbar war verwiesen. Dieser befindet sich in Zelle „B2“ und ist gleichzeitig der Startkurs zur Simulation der künftigen Kursentwicklung. In Zelle „F3 die Formel „=F2*EXP(E3)“ eingesetzt. Anschließend wird die Formel für die restlichen Zellen in Spalte D übernommen.
Es wird also der Kurs mit einer zufällig ausgewählten Kursänderung aus dem Beobachtungszeitraum verknüpft. War die Änderung positiv, so wird der neue Kurs höher notieren, war er negativ, so wird der neue Kurs tiefer liegen.

7-Kursentwicklung_b

 Schritt 8 – Kursverlauf grafisch anzeigen

Hilfreich ist es, den ermittelten Kursverlauf grafisch darzustellen. Da die Vorgehensweise sich bei unterschiedlichen Versionen unterscheidet, möchte ich über die Vorgehensweise dazu hier nicht näher eingehen.

8-Diagramm
Mit dem Betätigen der „F9“-Funktionstaste, können Sie neue Zufallswerte generieren.

Da einzelne, zufällige Kursreihen nicht aussagekräftig sind und deshalb eine große Bandbreite von Kursentwicklungen gewünscht sind, soll im nächsten Artikel eine Vielzahl von Kursbewegungen ausgegeben werden.

Mit der Nutzung unserer Website erklären Sie sich damit einverstanden, dass wir Cookies verwenden. Weitere Informationen

Die Cookie-Einstellungen auf dieser Website sind auf "Cookies zulassen" eingestellt, um das beste Surferlebnis zu ermöglichen. Wenn du diese Website ohne Änderung der Cookie-Einstellungen verwendest oder auf "Akzeptieren" klickst, erklärst du sich damit einverstanden.

Schließen